A configurational account of Finnish case

Ethan Poole
University of Massachusetts Amherst
ejpoole@linguist.umass.edu

Main claim:
Morphological case must be assigned according to the structural configuration of the DPs in the phase, rather than by functional heads.

Motivation:
In Finnish, dependent case is assigned where the relevant functional head would not be available, e.g. passives.

Analysis of Finnish case:
- vP phase: Nominative is unmarked and genitive is dependent.
- AspP phase: Partitive is unmarked and genitive is dependent.
- Internal arguments of telic eventualities raise to [Spec, AspP] to satisfy [TELIC] on Asp⁰ such that they partake in case competition in the vP phase.

1 Introduction: Models of case assignment

There has been a recent resurgence of the configurational case model wherein case is assigned according to the structural configuration of DPs: McFadden (2004), Bobaljik (2008), Baker & Vinokurova (2010), Preminger (2011 in press); Levin & Preminger (in press); Baker (to appear).

This model differs from the traditional functional-head case model wherein functional heads assign case either to their specifier (i) (Chomsky 1980, 1981) or to some DP via Agree (2) (Chomsky 2000, 2001).

1.1 Configurational case model

- Case is assigned according to the Disjunctive Case Hierarchy (3).

(3) Disjunctive Case Hierarchy:
lexical/inherent case → dependent case → unmarked case

- Algorithm for case calculus:
 1. Assign lexical and inherent cases.
 2. For each pair of remaining DPs, assign one of those DPs dependent case. This step is called case competition.
 3. Assign unmarked case to any DP whose case is still unvalued.

- Dependent-case relationship:
 In a nom-acc alignment, the lower DP receives dependent case (4). In an erg-abs alignment, the higher DP receives dependent case (5).

(4) nom-acc alignment:

(5) erg-abs alignment:

- Locality constraint:
 Dependent-case relationships cannot be established across case-assignment domains, which I assume to be phases (6) (McFadden 2004).

(6) [DP ... [phase ... DP ...]]

- Implementations:

1 If ergative is an inherent case associated with external argumenthood (Woolford 1997, 2006), the parameterisation of the dependent-case relationship is unnecessary. I remain agnostic on this issue.
1.2 Where Finnish comes into the story

- **Question:**
 What are the advantages (and disadvantages) of the configurational model over the functional-head model both conceptually and empirically?

- **Conceptual motivation:**
 Dependent case accounts for Burzio’s Generalisation, that a verb can assign accusative if it assigns an external θ-role, without stipulating that different types of \(v^o \) are arbitrarily inserted into the structure, while additionally accounting for the ERG-ABS case alignment.

- **Empirical motivation:**
 The commonly cited empirical motivation is Baker & Vinokurova (2010) who show that raising-to-object constructions in Sakha allow the embedded subject to be assigned accusative after having raised to an intransitive matrix clause where the relevant functional head would not be available (7).

(7) Masha [Misha-ny [yaIj]-ya dien]] tönün-ne
Masha Misha-ACC fall.sick-fut.3SG.SUBJ that return-past.3SG.SUBJ 'Masha returned (for fear) that Misha would fall sick’

Baker & Vinokurova (2010) [618]

These facts fall out naturally in a configurational model: the embedded subject raises to the matrix-object position such that a dependent-case relationship can be established with the matrix subject (8).

(8) \[
\begin{align*}
&\text{DP}_{\text{nom}} \quad \text{DP}_{\text{acc},i} \quad [t_i \ V^o \ V^o] \\
\end{align*}
\]

- **Problem:**
 In Sakha, accusative case is differential object marking (DOM). Although Baker & Vinokurova’s analysis is a nice account of how DOM arises in Sakha, it does not constitute knock-down empirical evidence for the configurational model because of the general lack of understanding about DOM.

- **Contributions of this talk:**
 - Finnish has constructions where genitive (the dependent case) is assigned even though the functional head assigning genitive would not be available. However, these genitive DPs crucially do not involve DOM. Therefore, Finnish provides sound empirical evidence for the configurational model.
 - A configurational model succinctly accounts for two otherwise disjoint phenomena in Finnish: (i) nominative-genitive case competition and (ii) the object-case alternation between partitive and nominative/genitive.

- **Structure of this talk:**
 1. I present data about nominative-genitive case competition and the partitive-nonpartitive object-case alternation in Finnish.
 2. Combining ideas from Preminger (2011) and Baker & Vinokurova (2010), I present a syntactic implementation of the configurational case model wherein DPs at the edge of a phase participate in case competition in the next highest phase.
 3. I show how the configurational model can account for Finnish structural case whereas the functional-head model cannot.

2 Background on Finnish case

- Finnish has four structural cases: nominative, accusative, genitive, and partitive.

(9) **Morphological Structural Case Paradigm:**

<table>
<thead>
<tr>
<th>Case</th>
<th>Nonhuman: ‘rutabaga’</th>
<th>Human pronouns: 3π</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominative</td>
<td>lanttu</td>
<td>lanttu-t</td>
</tr>
<tr>
<td>Accusative (DOM)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Genitive</td>
<td>lanttu-n</td>
<td>lanttu-j-en</td>
</tr>
<tr>
<td>Partitive</td>
<td>lanttu-a</td>
<td>lanttu-j-a</td>
</tr>
</tbody>
</table>

Kiparsky 2001, Hakulinen et al. 2004 [108]

- Accusative case is DOM based on animacy and definiteness which only occurs on human pronouns in telic eventualities (Csirmaz 2005 Keine & Müller 2008). In this presentation, I will not address how DOM accusative case is assigned.

- Following Nikanne (1993), I assume that lexically case-marked DPs are contained within PPs in Finnish. \(P^o \) assigns lexical case to its complement, the particular case depending on the type of \(P^o \) head. Additionally, I assume that verbs whose IAs are lexically case-marked select for the appropriate type of PP.

2.1 Nominative-genitive case competition

- At the clausal level, all DPs whose case is unvalued—i.e. those not marked with a lexical case or partitive case—compete for nominative case. The structurally highest DP receives nominative and all structurally lower DPs receive genitive.

\[\text{footnote}{2}\] For the sake of convenience, I collapse the distinction between lexical and inherent case.
The DPs that compete for nominative are the external argument (EA), the internal argument (IA), durational adjuncts (e.g. for an hour), spatial measure adjuncts (e.g. a kilometre), and multiplicative adjuncts (e.g. three times).

Whenever there is an EA, it always receives nominative because it is structurally highest (10). However, when the EA argument is removed, e.g. in a passive (11) or an imperative (12), the IA receives nominative.

(10) **Active:**
EAs to NOM, IA to GEN
Pekka

Pekka.NOM bought 3SG book-GEN
'Pekka bought the/a book'

(11) **Passive:**
IA to NOM
Kirja

book.NOM buy-PASS.PAST
'The book was bought' / 'People bought the book'

(12) **Imperative:**
IA to NOM
Osta kirja!

buy.IMP,3SG book.NOM
'Buy the/a book!

To see a structurally case-marked adjunct win the case competition and receive nominative, we must use a verb that assigns a lexical case to its IA, such as **luottaa** 'trust', and then passivise it to remove the EA (13a–c).

(13) **Case competition with adjuncts:**

a. **Active:**
EAs to NOM, Adjunct₁ to GEN, Adjunct₂ to GEN
Tarja luotti

[Kekkose-en]LEXICAL [kolmas] yhde-n
Tarja.NOM trusted,3SG Kekkonen-ILL one-GEN
vuode-n] [kolmanne-n kerra-n]
year-GEN third-GEN time-GEN
'Tarja trusted Kekkonen for a year for a third time'

b. **Passive:**
Adjunct₁ to NOM, Adjunct₂ to GEN
[Kekkose-en]LEXICAL [kolmas] yhde-n
Kekkonen-ILL trust-PASS.PAST one.NOM year.NOM
[kolmanne-n kerra-n]
third-GEN time-GEN
'Kekkonen was trusted for a year for a third time'

c. **Passive:**
Adjunct₁ to NOM
Kekkonen-ILL trust-PASS.PAST third-NOM time-NOM
'Kekkonen was trusted for a third time'

2.2 **Partitive-nonpartitive object-case alternation**

- The case of the IA is contingent on the telicity of the eventuality. An atelic eventuality yields a partitive IA (14). A telic eventuality yields a nominative or genitive (collectively "nonpartitive") IA based on the case competition discussed above in §2.1 (15).

(14) **Atelic eventuality:**
IA to PTV
Etsi-n karhu-a / *karhu-n
seek-1SG bear-PTV bear-GEN
'I am looking for the/a bear'

(15) **Telic eventuality:**
IA to GEN
Saa-n *karhu-a / karhu-n
get-1SG bear-PTV bear-GEN
'I will get the/a bear'

- In passives and other constructions without an EA, the case of the IA alternates between partitive and nominative (16).

(16) **Passives alternate between partitive and nominative:**

a. **Atelic eventuality:**
IA to PTV
Shamppanja-a juo-tiin juhli-ssa
champagne.PTV drink-PASS.PAST party-INE
'Champagne was drunk at the/a party'

b. **Telic eventuality:**
IA to NOM
Shamppanja juo-tiin
champagne.NOM drink-PASS.PAST
'The champagne was drunk' / 'They drank the champagne'

An eventuality’s telicity is largely determined by the choice of verb, which might tempt one to say that partitive is a lexical case assigned by specific verbs. However, it is possible to force a telic interpretation with an event delimiter, e.g. a goal or a resultative, which is reflected in the case marking (17).

3Finnish has subject pro-drop of tä and se. pro participates in nominative-genitive case competition where it always receives nominative because, as the EA, it is the structurally highest DP.
Event delimiter forces telic interpretation:

a. Atelic eventuality: \(IA \rightarrow PTV \)
 Ajoï-n auto-a / *auto-n
drove-1SG car-PTV car-GEN
 ‘I drove the/a car’

b. Telic eventuality: \(IA \rightarrow GEN \)
 Ajoï-n auto-n / *auto-a talli-in
drove-1SG car-GEN car-PTV garage-ILL
talli-in garage-ILL
 ‘I drove the/a car into the/a garage’

- Moreover, verbs that have both telic and atelic interpretations allow a partitive IA and a nonpartitive IA matching the interpretation (18).

Partitive-nonpartitive alternation:

a. Atelic eventuality: \(IA \rightarrow PTV \)
 Ammui-n karhu-a
 shot-1SG bear-PTV
 ‘I shot at the/a bear’

b. Telic eventuality: \(IA \rightarrow GEN \)
 Ammui-n karhu-n
 shot-1SG bear-GEN
 ‘I shot the/a bear’

Section summary

- The algorithm that assigns morphological case in Finnish is in (19). Step 1 handles the assignment of lexical cases. Steps 2–3 handle the assignment of structural cases.

Finnish case algorithm:

1. Assign the relevant lexical case to complements of P\(^0\) heads.
2. Assign partitive to the IA if the eventuality is atelic.
3. Starting from the bottom of the structure, for every pair of DPs with unvalued case, assign genitive to the lower one.
4. Assign nominative to any remaining DPs with unvalued case.

⇒ Challenge:
The challenge is to implement the algorithm (19) in the syntax. To do so, I will adopt the configurational case model of [Preminger 2011] in press with an additional proposal concerning case assignment at the phase edge.

3 Configurational case model in the syntax

3.1 Syntactic case calculus

- I adopt the syntactic case calculus of [Preminger 2011] in press in which the Disjunctive Case Hierarchy is a consequence of when and where DPs are merged into the structure.

- Assumption:
 DPs enter the derivation with an unvalued [CASE] feature which, in the obligatory-operations model, does not need valued.

- Lexical case = c-selection:
 A lexical head assigns the respective idiosyncratic lexical case to the DP that it c-selects, i.e. its sister, upon first merge (20).

\[\begin{array}{c}
V^0/P^0/\ldots \rightarrow \right}
Observation:
The structure consisting of a lexical head and the DP that it c-selects will necessarily be built before any larger structure containing that DP and another DP in a c-command relationship.

⇒ Consequence:
The precedence relations in the *Disjunctive Case Hierarchy* fall out naturally based on when and where DPs are merged into the structure.

- **Different domains, different cases:**
The morphological realisations of dependent case and unmarked case depend on the type of phase. In other words, each phase type can have a different dependent case and a different unmarked case. ([Yip et al. 1987](#) Baker & Vinokurova 2010)

- For example, in English, genitive is the unmarked case in the DP phase and nominative is the unmarked case in the vP and CP phases.

Case assignment as a syntactic operation:
The method of assigning dependent case is atypical of syntactic processes. I tentatively assume that the assignment of lexical and dependent case is encapsulated in a separate syntactic operation distinct from Agree ([Preminger 2011](#)).

I leave the precise details of dependent-case assignment to future research.

3.2 Case and the PIC

- The dependent-case relationship is subject to the locality condition that it cannot be assigned across phases (23).

(23) [DP ... [phase ... DP ...]]

The standard locality condition imposed by phases is the Phase Impenetrability Condition (PIC) (24) where the phase edge remains accessible to operations in the next highest phase ([Chomsky 2001](#)).

(24) **Phase Impenetrability Condition:**
The domain of phase head H° is not accessible to operations at the next highest phase ZP; only H° and its edge are accessible to such operations.

4 Application to Finnish case

- **Section outline:**
 First, I introduce Kratzer’s (2004) semantics for telicity and partitive case. Then, I argue that the movement required for the semantics of telicity feeds the IA of a telic eventuality participating in nominative-genitive case competition.

4.1 Kratzer’s semantics for telicity

- **Standard account of telicity ([Krifka 1992](#)):**
 There is a homomorphism between the eventuality and the IA. Telicity is an algebraic property of eventualities: atelic eventualities are cumulative (26) and telic eventualities are quantised (27).

(26) P is cumulative (atelic) iff

$$\forall x, y [P(x) \land P(y) \rightarrow P(x \cup y)]$$

(If P holds of x and y, then it holds of their fusion.)

(27) P is quantised (telic) iff

$$\forall x, y [P(x) \land P(y) \rightarrow P(x \cap y)]$$

(If P holds of x and y, then it holds of their intersection.)

4.1.1 Item 1: Telicity with a derived phase

- **Proposal from Baker & Vinokurova (2010):**
 A DP with unvalued case located at the edge of a phase partakes in case competition in both that phase and the next highest phase such that it can receive dependent or unmarked case in the higher phase (25).

(25) $\begin{array}{c}
ZP \quad DP \quad \ldots \quad \underbrace{DP \quad \ldots \quad H^\circ \quad [\ldots \quad DP \quad \ldots \quad]} \\
\end{array}$

⇒ I will argue that Finnish case shows this predicted behaviour and exemplifies the proposal. IAs of telic eventualities A-move to the phase edge such that they can participate in nominative-genitive case competition at the clausal level.⁵

- **Proposal from Baker & Vinokurova (2010):**
 A DP with unvalued case located at the edge of a phase partakes in case competition in both that phase and the next highest phase such that it can receive dependent or unmarked case in the higher phase (25).

(25) $\begin{array}{c}
ZP \quad DP \quad \ldots \quad \underbrace{DP \quad \ldots \quad H^\circ \quad [\ldots \quad DP \quad \ldots \quad]} \\
\end{array}$

⇒ I will argue that Finnish case shows this predicted behaviour and exemplifies the proposal. IAs of telic eventualities A-move to the phase edge such that they can participate in nominative-genitive case competition at the clausal level.

- **Proposal from Baker & Vinokurova (2010):**
 A DP with unvalued case located at the edge of a phase partakes in case competition in both that phase and the next highest phase such that it can receive dependent or unmarked case in the higher phase (25).

(25) $\begin{array}{c}
ZP \quad DP \quad \ldots \quad \underbrace{DP \quad \ldots \quad H^\circ \quad [\ldots \quad DP \quad \ldots \quad]} \\
\end{array}$

Rightarrow I will argue that Finnish case shows this predicted behaviour and exemplifies the proposal. IAs of telic eventualities A-move to the phase edge such that they can participate in nominative-genitive case competition at the clausal level.

- **Proposal from Baker & Vinokurova (2010):**
 A DP with unvalued case located at the edge of a phase partakes in case competition in both that phase and the next highest phase such that it can receive dependent or unmarked case in the higher phase (25).

(25) $\begin{array}{c}
ZP \quad DP \quad \ldots \quad \underbrace{DP \quad \ldots \quad H^\circ \quad [\ldots \quad DP \quad \ldots \quad]} \\
\end{array}$

⇒ I will argue that Finnish case shows this predicted behaviour and exemplifies the proposal. IAs of telic eventualities A-move to the phase edge such that they can participate in nominative-genitive case competition at the clausal level.

4 Application to Finnish case

- **Section outline:**
 First, I introduce Kratzer’s (2004) semantics for telicity and partitive case. Then, I argue that the movement required for the semantics of telicity feeds the IA of a telic eventuality participating in nominative-genitive case competition.

4.1 **Kratzer’s semantics for telicity**

- **Standard account of telicity ([Krifka 1992](#)):**
 There is a homomorphism between the eventuality and the IA. Telicity is an algebraic property of eventualities: atelic eventualities are cumulative (26) and telic eventualities are quantised (27).

(26) P is cumulative (atelic) iff

$$\forall x, y [P(x) \land P(y) \rightarrow P(x \cup y)]$$

(If P holds of x and y, then it holds of their fusion.)

(27) P is quantised (telic) iff

$$\forall x, y [P(x) \land P(y) \rightarrow P(x \cap y)]$$

(If P holds of x and y, then it holds of their intersection.)

³It is necessary to restrict case assignment to A-positions to avoid incorrectly predicting that a DP that has undergone A'-movement to a higher position can assign dependent case, which would be problematic for successive cyclic movement; see [McFadden 2003](#) 109–210 for discussion.
(27) P is quantised (telic) iff
$$\forall x, y [P(x) \land P(y) \rightarrow \neg y \in x]$$

(If P holds of x and y, then y is not a proper subpart of x.)

• **Problem:**
How can morphological case be assigned dependent on an algebraic property computed at LF?

• **Solution:** Put telicity into the syntax:

Krämer (2004) proposes that telicity is the result of a telic feature on a separate syntactic head that imposes a culmination requirement on the eventuality, rather than an algebraic property of eventualities. [telic] is optionally inserted into the structure to produce a telic eventuality. She proposes two possible denotations.

In the first denotation, [telic] asserts that the eventuality culminates (28a). The culmination requirements are idiosyncratically specified in the verb’s denotation (28b).

(28) a. $\llbracket \text{[telic]} \rrbracket = \lambda x. \lambda e. [R(x)(e) \land \text{culminate}(x)(e)]$

b. $\llbracket \text{shoot} \rrbracket = \lambda x. \lambda e. [\text{shoot-at}(x)(e) \land \text{culminate}(x)(e) \leftrightarrow \text{hit}(x)(e)]$

In the second denotation, [telic] imposes a more general culmination requirement by imposing a mapping between the IA and the eventuality in the spirit of Krifka (1993) Mapping to Events (29).

(29) $\llbracket \text{[telic]} \rrbracket = \lambda x. \lambda e. [R(x)(e) \land \exists f [\text{measure}(f) \land \forall x' [x' \in f(x) \rightarrow \exists e' [e' \subseteq e \land R(x')(e')]]]]$

In (29), the measure() function bears the burden of determining the granularity by which the IA measures out the eventuality. It is “a general cognitive mechanism that determines a range of functions that map referents of certain direct objects into concrete or abstract ‘measuring rods’” (Krämer 2004:394).

• I will assume the first denotation for the sake of simplicity and that [telic] is located on Asp$^\circ$.

• An illustration of how Krämer’s semantics work is below in (30).

\[\begin{array}{c}
\text{the bear} \\
\text{AspP}_3 \\
\text{AspP}_2 \\
\text{AspP}_1 \\
\lambda x \\
\text{VP} \\
\text{VP} \\
\text{VP}
\end{array}\]

(a) $\llbracket \text{AspP}_2 \rrbracket = \lambda x.\lambda e. [\text{shoot-at}(x)(e) \land \text{culminate}(x)(e) \leftrightarrow \text{hit}(x)(e)]$

(b) $\llbracket \text{AspP}_3 \rrbracket = \lambda e. [\text{shoot-at}(\text{the bear})(e) \land \text{culminate}(\text{the bear})(e) \leftrightarrow \text{hit}(\text{the bear})(e) \land \text{culminate}(\text{the bear})(e)]$

\Rightarrow Notice that the denotation of [telic] requires that the IA raise to [Spec, AspP] in order for the structure to be interpretable. This will be important because the analysis of Finnish case presented in §4.2 relies on this movement to move a DP from one phase to the next.

4.2 Two domains of case assignment

• The idea in a nutshell:
In Finnish, there are two domains of structural case-assignment: the vP phase for nominative-genitive case competition and the AspP phase for the partitive-nonpartitive object-case alternation. The movement required by [telic] for the structure to be interpretable raises a DP from the AspP phase to the vP phase to participate in nominative-genitive case competition.

There is a nonstandard assumption in (30) about how the movement to [Spec, AspP] works. Krämer proposes that the movement is driven by coindexation of the [telic] feature and the IA which enables [telic] to bind the trace left behind by the IA after it moves. This proposal essentially amounts to bundling the λ-abstraction with the [telic]-bearing Asp$^\circ$, so I have represented it as such for the sake of simplicity.
• Assumptions:
 1. AspP and vP are phases.
 2. Durational, spatial measure, and multiplicative (DMM) adjuncts are ad-
 joined in vP.

• AspP phase = partitive-nonpartitive object-case alternation:
 In the AspP phase, partitive is the unmarked case and genitive is the depen-
 dent case. If the eventuality is atelic, the IA remains in-situ and its unvalued case
 spells out as partitive (/three.oldstyle/one.oldstylea). If the eventuality is telic, the IA A-
 moves to the edge of the AspP phase to satisfy [t.sc/e.sc/l.sc/i.sc/c.sc]
 such that it partakes in nominative-genitive
 case competition in the vP phase (/three.oldstyle/five.oldstyle).

(31) a. Atelic eventuality:

 \[
 \begin{array}{c}
 \text{AspP} \\
 \text{Asp} \quad \text{VP} \\
 \text{V} \quad \text{IA} \quad \text{PTV}
 \end{array}
 \]

b. Telic eventuality:

 \[
 \begin{array}{c}
 \text{IA} \quad \text{AspP} \\
 \text{Asp} \quad \text{V} \quad \text{t}
 \end{array}
 \]

• Partitive is a “default”, the structural case that a DP receives if it remains structurally too low. This approach extends naturally to adpositions with pre and post variants (32), where the postpositional word order is derived via movement
 (Manninen /two.oldstyle/zero.oldstyle/zero.oldstyle/three.oldstyle), and numeral constructions (33), where the numeral reflects the structural case and the NP is obligatorily partitive
 (Manninen /two.oldstyle/zero.oldstyle/zero.oldstyle/three.oldstyle).

(32) Adpositions with pre and post variants:

a. Preposition:
 'Minneapolis on [PP keske-llä Minnesota-a]
 'Minneapolis is middle-ADE in Minnesota'

b. Postposition:
 'Minneapolis on [PP Minnesota-n keske-llä t]
 'Minneapolis is in the middle of Minnesota'

(33) Numerals constructions where concord is blocked:

 Minä osti-n [kaksi [uut-ta auto-a]]
 'I bought two new cars'

• vP phase = nominative-genitive case competition:
 In the vP phase, nominative is the unmarked case and genitive is the depen-
 dent case. The vP phase contains the EA, the IA if the eventuality is telic, and all the
 DMM adjuncts. (34) and (35) illustrate the case assignment in a telic eventuality
 and an atelic eventuality respectively.

(34) Telic eventuality:

 \[
 \begin{array}{c}
 \text{EA} \quad \text{NOM} \\
 \text{vP} \\
 \text{AspP} \\
 \text{V} \quad \text{t}
 \end{array}
 \]
Atelic eventuality:

\[
\begin{array}{c}
\text{vP} \\
\text{EA} \rightarrow \text{NOM} \\
\text{AspP} \\
\text{VP} \\
\text{Adjunct} \rightarrow \text{GEN} \\
\end{array}
\]

Passives:

(36) and (37) illustrate the case assignment in a passivised telic eventuality and a passivised atelic eventuality respectively. These derivations also apply to constructions where the IA can surface as nominative, such as imperatives, ncessive constructions, and existential constructions.

Passivised telic eventuality:

\[
\begin{array}{c}
\text{v^o} \\
\text{vP} \\
\text{AspP} \\
\text{VP} \\
\text{t} \\
\text{IA} \rightarrow \text{PTV} \\
\end{array}
\]

Passivised atelic eventuality:

\[
\begin{array}{c}
\text{v^o} \\
\text{vP} \\
\text{AspP} \\
\text{VP} \\
\text{V^o} \\
\text{IA} \rightarrow \text{PTV} \\
\end{array}
\]

What about the functional-head model?

If genitive is assigned by a functional head, say v^o, then the genitive-marked adjuncts in (13b–c) are unexpected because this head would presumably not be available in passives because structurally case-marked IAs in passives receive nominative (11).

Attempting to salvage the functional-head model:

What if every clause in Finnish has a nominative-assigning T^o and a genitive-assigning v^o such that T^o assigns nominative to the highest DP and v^o assigns genitive to all other DPs? There are reasons to disprefer this analysis:

1. v^o enters the derivation before T^o such that it would assign genitive to the IA before T^o could assign it nominative. We would therefore need case overwriting or case stacking.

2. We might expect T^o to reflect φ-agreement with the DP that it assigns nominative, but there is no φ-agreement on the verb outside of canonical active sentences, e.g. (10).

3. We would need to allow for MULTIPLE AGREE so that v^o could assign genitive to the IA and an arbitrary number of adjuncts.

However, in the configurational model, the genitive-marked adjuncts in (13b–c) are expected because genitive is assigned in a dependent-case relationship, i.e. only if there is a structurally higher DP in the phase which is the case in (13b) and not in (13c).

⇒ Conclusion:

Finnish nominative-genitive case competition provides solid empirical evidence for the configurational case model.
5 Conclusion

- Finnish nominative-genitive case competition cannot straightforwardly be handled by the functional-head model and is best accounted for in the configurational model.
- It follows from the PIC that DPs with unvalued case at the edge of a phase participate in case competition in the next highest phase.
- Finnish has two domains of case assignment: the AspP phase, where partitive is the unmarked case and genitive is the dependent case, and the vP phase, where nominative is the unmarked case and genitive is the dependent case.
- Kratzer’s semantics for telicity require the IA to raise to [Spec, AspP] to yield an interpretable structure. This movement feeds the IAs of telic events participating in nominative-genitive case competition in the vP phase.

Acknowledgements: Many thanks to Rajesh Bhatt, Ellen Woolford, Angelika Kratzer, Stefan Keine, Mark Norris, Hooi Ling Soh, Seth Cable, Jean-Philippe Marcotte, Dan Karvonen, Jeremy Hartman, and the UMass Syntax-Semantics Reading Group for their helpful and insightful discussion. Thanks also to Jaana Viljakainen for grammaticality judgements. This work is supported by the National Science Foundation Graduate Research Fellowship under NSF DGE-0907995.

Appendix: Adjuncts

- There are some outstanding complications with the behaviour of durational, spatial measure, and multiplicative (DMM) adjuncts and case marking, which are briefly mentioned in this appendix. Determining the attachment site and semantics of DMM adjuncts is beyond the scope of this presentation.

- Scope mismatch:
 In (13b), the durational adjunct is nominative and the multiplicative adjunct is genitive. In the analysis presented here, this case pattern means that the durational adjunct c-commands the multiplicative adjunct. However, the multiplicative adjunct scopes over the durational adjunct, at least in the most salient interpretation. We know that adjuncts are ambiguous between a left-branching and right-branching structure (Pesetsky 1995), so this mismatch may not be problematic. More data would help to shed light on this problem.

- IAs c-command DMM adjuncts:
 In (34–37), the DMM adjunct is represented as being structurally higher than the IA. However, facts from NPI licensing show that the IA c-commands any DMM adjuncts (38).

(38) IA c-commands DMM adjuncts:
 a. Durative:
 John drove no car [for any length of time]
 b. Spatial measure:
 John drove no car [any distance]
 c. Multiplicative:
 John hit no one [any number of times]

I assume that there is some structural configuration relevant for dependent-case assignment and NPI licensing where the IA of a telic eventuality c-commands DMM adjuncts.