Movement of properties and properties of movement

Ethan Poole (ejpoole@linguist.umass.edu; http://ethanpoole.com)

Overview

- It is well-known that our semantic machinery generates many meanings that are not utilized in natural language.
- This paper contributes a novel argument that one way in which semantics is constrained is in the homomorphic mapping from syntax to semantics: > Movement cannot create λ -abstractions over properties:

(1) *
$$\begin{bmatrix} \mathsf{DP}_1 \ \lambda f_{\langle e,t \rangle} \ \cdots \ \begin{bmatrix} \dots \ f_{\langle e,t \rangle} \ \end{bmatrix}_1 \ \cdots \ \end{bmatrix}$$

Traces cannot be type shifted into property-type meanings.

- Evidence for these arguments comes from a detailed investigation of movement that targets property-denoting DPs.
- This thus provides a novel argument for the economy hypothesis:
- No Higher-Type Variables Constraint (Landman 2006) (2) Variables in the LFs of natural languages are only of individual types, e.g. entities (*e*), situations/worlds (*s*), and degrees (*d*).

Π-positions

Postal (1994) observes that there are syntactic environments in English that can be targeted by only some types of A'-movement, such as *wh*-movement but not topicalization. I will refer to these environments as *Π***-positions**:

- **1** Existential constructions:
 - a. There is **a book** on the table. (3)
 - b. **What**₁ is there $__1$ on the table?
 - c. * A book₁, there is $__1$ on the table.
- **2** Change-of-color verbs:
 - a. Megan painted the house **magenta**. (4)
 - b. **What color**₁ did Megan paint the house $__1$?
 - c. *Magenta₁, Megan painted the house ____1.
- **3** Naming verbs:
 - a. Helen called the cat **Snowball**. (5)
 - b. **What name**₁ did Helen call the cat $__1$?
 - c. ***Snowball**₁, Helen called the cat $__1$.
- **4 Predicate nominals:**
 - a. Erika became **a teacher**. (6)
 - b. **What kind of teacher**₁ did Erika become _____1?
 - c. * A math teacher₁, Erika became ____1.

Generalization I: Properties

\square DPs in **T**-positions denote properties (e, t).

- Existential constructions (Milsark 1974; Heim 1987; McNally 1997, 1998)
- Change-of-color verbs (resultatives) (Kratzer 2005)
- Naming verbs (Matushansky 2008)
- Predicate nominals (Williams 1983; Partee 1986)

Generalization II: Scope

shift scope obligatorily: $\forall \gg \exists; \checkmark \exists \gg \forall$ *Everyone* likes a (different) TV show. (7)* $\forall \gg \exists; \checkmark \exists \gg \forall$ **A (#different) TV show**₁, *everyone* likes ____1. (8)scope optionally: (9) **How many books**₁ should Nina read _____1? a. *Wide:* For what *n*: There are *n*-many particular books *x* such that Nina should read *x*. how many \gg should b. *Narrow:* For what *n*: It is necessary for there to be *n*-many books *x* such that Nina reads x. should \gg how many not shift scope: (10) *how many \gg should;
 should \gg how many a. **How many books**₁ should there be _____1 on the table? b. How many colors₁ should Nina paint the house $__1$? the subject or negation from a Π-position: There are*n't* two books on the table. \checkmark not \gg two; *two \gg not (11)A (#different) contractor painted the house every color. (12) \checkmark $\exists \gg \forall; * \forall \gg \exists$ of type *e* in order to shift scope. with the property-type requirement of a Π -position.

Scope-shifting movement cannot target a II-position. Topicalization • The movement types that **cannot** target Π-positions, e.g. topicalization, Wh-movement • The movement types that **can** target Π-positions, e.g. *wh*-movement, shift Crucially, these movement types can only target Π-positions when they do **Quantifier Raising (QR)** This generalization is further supported by Π-positions prohibiting QR over Analysis **Scope-shifting movement** → **Trace of type** *e* • Scope-shifting movement, under standard assumptions, must leave a trace • An *e*-type trace does not denote a property and therefore is incompatible • This incompatibility yields a type mismatch and hence ungrammaticality:

(13) *
$$\begin{bmatrix} \mathsf{DP}_1 & \lambda x_e & \dots & \begin{bmatrix} x_e \\ \mathbf{y} \end{bmatrix} \mathbf{\pi}$$
-pos $\dots \end{bmatrix}$

Non-scope-shifting movement → Reconstructs • Movement that does not shift scope instead reconstructs syntactically.

• Therefore, if a DP would not ordinarily violate the property-type requirement of a Π-position, then it will not do so under reconstruction either:

$$(14) \checkmark \begin{bmatrix} 1 \\ 1 \\ reconstruct \end{bmatrix} \Pi - pos \cdots \end{bmatrix}$$

Generalization III: Weak definites

Definites in T-positions must be weak definites.

- not (Schwarz 2009):
- (15) $[\text{the}_{WEAK}] = \lambda P \cdot \iota x$
- (16) $\llbracket \text{the}_{\text{strong}} \rrbracket = \lambda y \lambda \varPi$
- tificational covariance with an indefinite:
- (17)b.

Type shifting and traces

- (19)

Proposal

- targeting Π-positions and Generalization III.
- This complementarity is **syntactic**:
- the_{STRONG} occupies D⁰.
- Nominal type shifters occupy D⁰ as well.
- - $\left[_{\mathsf{DP}}\left(\mathcal{BE}
 ight)
 ight]$ (21)nP th
 - (22) [DP the_{STRONG} [nP n^0

(23) *
$$DP_1 \lambda x \dots [DP]$$

(24) * $DP_1 \lambda x \dots [DP]$

Acknowledgements: Many thanks to Rajesh Bhatt, Kyle Johnson, Barbara Partee, Ellen Woolford, in addition to Daniel Altshuler, Tim Hunter, Stefan Keine, Angelika Kratzer, David Pesetsky, and audiences at UMass. This work is supported by the NSF GRFP under NSF DGE-1451512.

UMassAmherst

• The important difference between weak and strong definites is that strong definites are anaphoric (i.e. have an index/variable) and weak definites are

$$x[P(x)]$$

$$P \cdot \iota x[P(x) \land x = y]$$

$$index$$

Definites in Π-positions cannot be anaphoric, as shown below with quan-

Every time Irene picks out *a new color* for the bathroom,

a. #Helen has to paint the room [the color] Π -pos.

Helen complains that **the color** is too bright.

• Property denotations can be achieved via type shifting (Partee 1986):

(18) $\mathcal{BE} = \lambda \mathcal{P}_{\langle et,t \rangle} \lambda x_e \cdot \mathcal{P}([\lambda y \cdot y = x]) = \lambda \mathcal{P}_{\langle et,t \rangle} \lambda x_e \cdot \{x\} \in \mathcal{P}$

I painted the house $[\mathcal{BE}(\text{the darker shade of green})]_{\Pi-\text{pos}}$.

• Traces are interpreted via Trace Conversion (TC), the LF rule that interprets traces under the Copy Theory of Movement (Fox 2002):

(20) $DP_1 \lambda x \dots [D^0 NP]_1 \rightsquigarrow_{TC} DP_1 \lambda x \dots [[the x] NP]_1$ — index —

• Crucially, TC requires the strong definite determiner because it must have access to the index to be bound by the λ -abstraction created by movement.

• Nominal type shifting and strong definites are in complementary **distribution**. This accounts for both the ban on scope-shifting movement

 $\begin{bmatrix} D^0 \begin{bmatrix} n^0 & NP \end{bmatrix} \end{bmatrix}$

• the_{WEAK} occupies some lower functional head, say n^0 .

 \succ Type-shifted definites in Π -positions are always weak definites:

heweak	NP]]	→ Weak definite; ✓type shifting
\mathbf{n}^0	NP]]	→ Strong definite; X type shifting

> TC and type shifting cannot apply to the one and the same DP:

P BE [_{nP} the _{WEAK} NP]] ₁]π-pos ?? no variable to bind	 Property Quantification
$P \text{ the}_{x}^{\text{STRONG}} \left[_{nP} n^{0} \text{ NP} \right] _{1} \mathbf{\Pi} - pos$	Property Quantification