Cataloguing reconstruction effects

LING 252 \cdot Ethan Poole \cdot 30 March 2020

1 Setting the stage

• Moved elements exhibit a special CONNECTIVITY with their premovement positions:

(1)	Thematic connectivity	
	[Which book] did Alex read?	(<i>which book</i> = IA of <i>read</i>)

- (2) Case connectivity
 - a. Who(*m) did you say [_____ saw Alex]? subject extraction
 - b. Who(m) did you say [Alex saw ___]?
 object extraction
- ⇒ This connectivity can manifest in more subtle and interesting ways in what are called RECONSTRUCTION EFFECTS:
 - (3) [Someone from Duluth] is likely [_____ to win the lottery].
 - a. **Surface scope (= wide)** someone ≫ likely There is a (particular) person from Duluth who is likely to win the lottery.
 - b. **Reconstructed scope (= narrow)** likely \gg someone It is likely that there is a person from Duluth who will win the lottery.
 - Syntax-centric approach (SynR)

* Putting it all together

b. SemR

c. SynR

(6) a.

Ordinary trace

Reconstruction effects are derived by placing the moved element back in its premovement position at LF:¹

- (4) LF: _____ is likely [[someone from Duluth] to win the lottery]
- *Semantics-centric approach (SemR)* Reconstruction effects are derived using traces of higher-semantic types:²

There are (in principle) three means of interpreting a movement dependency:³

LF: is likely [[someone from Duluth] to win the lottery]

(5) LF: [someone from Duluth] [$\lambda Q_{\langle et, t \rangle}$ [is likely [$Q_{\langle et, t \rangle}$ to win the lottery]]]

LF: [someone from Duluth] [λ_1 [is likely [t_1 to win the lottery]]]

LF: [someone from Duluth] [λ_1 [is likely [T_1 to win the lottery]]]

Romero (1998); Fox (1999)

(1990); Heycock (1995);

¹ Chomsky (1976, 1993, 1995); May (1977, 1985); Cinque

² von Stechow (1991); Cresti (1995); Rullmann (1995)

³ The 'big T' notation: $\begin{bmatrix} t_i \end{bmatrix}^g \in \mathbf{D}_e \\
\begin{bmatrix} \mathbf{T}_i \end{bmatrix}^g \in \mathbf{D}_{\langle et, t \rangle}$

Terminology

- 'reconstruction effects' = the empirical phenomenon
- ' α syntactically reconstructs' = α is interpreted via SynR
- ' α semantically reconstructs' = α is interpreted via SemR
- ' α reconstructs for β ' = α is evaluated for β in its premovement position
- 'trace' = λ -bound variable
- 'premovement position' = base or intermediate position

2 Quick background: Wh-question semantics

• Questions denote sets of answers (i.e. sets of propositions = sets of sets of worlds):⁴ ⁴ Hamblin (1973); Karttunen

(1977)

(7) [[which cat did Alex adopt]] $(w_0) = \begin{cases} \lambda w . \text{Alex adopts Hobbes in } w, \\ \lambda w . \text{Alex adopts Salem in } w, \\ \lambda w . \text{Alex adopts Garfield in } w, \\ \vdots \end{cases}$ = $\{p : \exists x [x \text{ is a cat } \land p = \lambda w . \text{Alex adopts } x \text{ in } w]\}$ = $\lambda p_{st} . \exists x [x \text{ is a cat } \land p = \lambda w . \text{Alex adopts } x \text{ in } w]$

- To more conveniently represent question interpretations, we can use paraphrases like the following:
 - (8) a. For what *x*: Alex adopts the cat *x*.
 - b. For what *x*: Alex adopts *x*, where *x* is a cat.
 - c. For what cat *x*: Alex adopts *x*.

3 Reconstruction effects

3.1 Quantificational scope

* SCOPE RECONSTRUCTION is when a moved quantificational expression takes scope in its launching site, rather than its landing site.⁵

• A quick primer on 'how many' questions

To probe scope reconstruction with \overline{A} -movement, in English, it is necessary to look at *how many* questions.

- In addition to its *wh*-meaning component, *how many* carries existential quantification over entities.
- This quantification may vary in scope. Thus, when *how many* moves over another scope-bearing expression, it gives rise to a scope ambiguity.⁶
- \Rightarrow To illustrate, consider the following, where *how many* moves over a modal:

(9) [How many books] should Alex read ____ this summer? how many >> should; should >> how many

⁵ For example, (3) above with A-movement.

⁶ Kroch (1989); Cinque (1990);
 Cresti (1995); Rullmann (1995); Frampton (1999)

- Surface-scope reading (= wide scope)
 - (10) Wide-scope reading of (9) how many \gg should For what number *n*: There are *n*-many (particular) books *x* such that it is necessary that Alex read *x* this summer.
 - Assumes that there is a certain set of books that Alex should read and asks how many such books there are.
 - *Possible context:* Alex has a summer English assignment to read a handful of specific literary classics before the start of the school year.
 - The books being asked about are constant across the modal alternatives.
- \Rightarrow Corresponds to surface word order \rightsquigarrow surface-scope reading
- Reconstructed-scope reading (= narrow scope)
 - (11) **Narrow-scope reading of (9)** should \gg how many For what number *n*: It is necessary that there be *n*-many books *x* such that Alex reads *x* this summer.
 - Assumes that there is a particular number of books that Alex should read, without having any particular books in mind.
 - *Possible context:* Alex's summer English assignment is to read ten books before the start of the school year, but it does not matter which ten books those are.
 - The books being asked about may vary across the modal alternatives.
- \Rightarrow Corresponds to premovement position \rightsquigarrow reconstructed-scope reading

• More examples

- (12) [How many people] should [_____ bring dessert]?
 - a. **Surface-scope reading** how many \gg should For what number *n*: There are *n*-many (particular) people *x* such that it is necessary that *x* bring dessert.
 - b. **Reconstructed-scope reading** should \gg how many For what number *n*: It is necessary that there be *n*-many people *x* such that *x* bring dessert.
- (13) [How many books] does Alex want [to read ____]?
 - a. **Surface-scope reading** how many \gg want For what number *n*: There are *n*-many (particular) books *x* such that in all of Alex's bouletic alternatives, Alex reads *x*.
 - b. **Reconstructed-scope reading** want \gg how many For what number *n*: In all of Alex's bouletic alternatives, there are *n*-many books *x* such that Alex reads *x*.

Sharpening your judgements

- There are certain island(-like) environments that block reconstructed-scope readings, for reasons not fully understood.⁷
- Ultimately, we need a theory of these environments (so-called "scope islands"), but at the moment, they can be useful for fine-tuning your judgements.

- Negative islands

- Wh-islands

- (15) a. [How many books] do you think [Alex read ____]?
 'how many >> think; 'think >> how many

3.2 Pronominal binding

- *** PRONOMINAL-BINDING RECONSTRUCTION is when a moved element contains a pronoun that is bound by another expression that the moved element crosses over:**
 - (16) [Which of **their**_{1/2} friends] did [**every child**]₁ see ____?
- The result of pronominal-binding reconstruction is typically a FUNCTIONAL READ-ING, where the *wh*-phrase ranges over functions.⁸
- ⇒ Because pronouns cannot ordinarily be bound by expressions that do not c-command them, it must be the movement dependency that enables this interpretation.
- In the case of anaphora, this reconstruction is obligatory:
 - (17) [Which picture of $\mathbf{themself}_{1/*2}$] does [**no person**]₁ like ____?
- Note: Because reflexives in picture NPs are (purportedly) subject to perspectival effects, it is usually safer to look at bound pronouns . . .

 ⁷ See Kroch (1989); Rullmann (1995); Cresti (1995).

⁸ Engdahl (1980, 1986); Heim (2012)

3.3 Referential opacity

- * REFERENTIAL-OPACITY RECONSTRUCTION is when a moved element is interpreted opaquely with respect to an intensional operator that it crosses over:
 - (18) [Which criminal] does Alex want to date $__1$?
 - a. **Opaque interpretation** For what *x*: In all of Alex's bouletic alternatives w' in w_0 , Alex dates *x* in w', where *x* is a criminal in w'.

b. Transparent interpretation

For what *x*: In all of Alex's bouletic alternatives w' in w_0 , Alex dates *x* in w', where *x* is a criminal in w_0 .

- **Opaque reading (de dicto):** The person who Alex wants to date is a criminal in Alex's bouletic alternatives, but not necessarily in the evaluation world.
- *Transparent reading (de re):* The person who Alex wants to date is a criminal in the actual world, but not necessarily in Alex's bouletic alternatives.

• Reminder about de re vs. de dicto

- It is in principle possible for the opaque and transparent readings to be identical.
- For example, in (18), the referent of *which criminal* could be a criminal in both the actual world and in Alex's bouletic alternatives.
- In such contexts, one cannot detect a difference between the two readings.
- In order to detect the ambiguity in (18), Alex needs to be wrong or ignorant about the identity of the referent of *which criminal*.

4 Condition C connectivity

- It is fairly common to see talk of "Condition C reconstruction". It is invoked to explain contrasts like the following:
 - (19) [Which picture of $Alex_1$] does $she_{*1/2}$ like ____?
- \Rightarrow The basic story:
 - From its surface position, *Alex* is not c-commanded by *she*. Nevertheless, the two cannot corefer.
 - If *Alex* were evaluated for Binding Theory in the base position of *which picture of Alex*, it would violate Condition C, and thus the result would be ungrammatical.
 - Thus, the reason why (19) is ungrammatical with coreference is because the *wh*-phrase is necessarily evaluated for Condition C in the launching site of movement.
 - Therefore, there is "reconstruction for Condition C", and it is obligatory.
 - A rant

Personally, I do not subscribe to that last conclusion of this story. The terminology of "Condition C reconstruction" is, at best, misleading. It makes no sense to talk about an element "reconstructing" to yield an ungrammatical structure.

- * The appropriate term—and the one that was used in the earlier literature—is CONDI-TION C CONNECTIVITY.
- As we will see next week, Condition C connectivity is relevant for understanding reconstruction, but it is not itself a reconstruction effect.

References

Chomsky, Noam. 1976. Conditions on rules of grammar. Linguistic Analysis 2:303-351.

- Chomsky, Noam. 1993. A minimalist program for linguistic theory. In *The View from Building 20: Essays in Linguistics in Honor of Sylvain Bromberger*, eds. Kenneth Hale and Samuel Jay Keyser, 1–52. Cambridge, MA: MIT Press.
- Chomsky, Noam. 1995. The Minimalist Program. Cambridge, MA: MIT Press.
- Cinque, Guglielmo. 1990. Types of A'-dependencies. Cambridge, MA: MIT Press.
- Cresti, Diana. 1995. Extraction and reconstruction. Natural Language Semantics 3:79-122.
- Engdahl, Elisabet. 1980. The syntax and semantics of questions in Swedish. Ph.D. dissertation, University of Massachusetts, Amherst, MA.

Engdahl, Elisabet. 1986. Constituent Questions. Dordrecht: D. Reidel Publishing Company.

- Fox, Danny. 1999. Reconstruction, variable binding, and the interpretation of chains. *Linguistic Inquiry* 30:157–196.
- Frampton, John. 1999. The fine structure of *wh*-movement and the proper formulation of the ECP. *The Linguistic Review* 16:43–61.
- Hamblin, Charles. 1973. Questions in Montague English. *Foundations of Language* 10:41-53.
- Heim, Irene. 2012. Functional readings without type-shifted noun phrases. Ms., MIT.
- Heycock, Caroline. 1995. Asymmetries in reconstruction. Linguistic Inquiry 26:547-570.
- Karttunen, Lauri. 1977. Syntax and semantics of questions. *Linguistics and Philosophy* 1:3-44.
- Kroch, Anthony. 1989. Amount quantification, referentiality, and long *wh*-movement. Ms., University of Pennsylvania.
- May, Robert. 1977. The grammar of quantification. Ph.D. dissertation, MIT, Cambridge, MA.
- May, Robert. 1985. Logical Form: Its structure and derivation. Cambridge, MA: MIT Press.
- Romero, Maribel. 1998. Focus and reconstruction effects in *wh*-phrases. Ph.D. dissertation, University of Massachusetts, Amherst, MA.
- Rullmann, Hotze. 1995. Maximality in the semantics of *wh*-constructions. Ph.D. dissertation, University of Massachusetts, Amherst, MA.
- von Stechow, Arnim. 1991. Syntax und Semantik. In *Semantik/Semantics: Ein internationales Handbuch der zeitgenössischen Forschung*, eds. Arnim von Stechow and Dieter Wunderlich, 90–148. Berlin: de Gruyter.