Embedding as delayed substitution

LING 252 · Ethan Poole · 6 January 2022

1 Introduction

- Standardly, embedding is taken to involve a clause merging directly with the embedding predicate and then subsequently building up the matrix clause:
 - (1) a. **Embed the clause** [VP believe [CP that Björk ate the natto]]
 - b. **Build up the matrix clause** $\begin{bmatrix} \nu_{P} \ \nu^{0} \ [_{VP} \ believe \ [_{CP} \ that \ Björk \ ate \ the \ natto \] \] \] \\ \begin{bmatrix} TP \ Kate \ T^{0} \ [_{\nu P} \ \nu^{0} \ [_{VP} \ believe \ [_{CP} \ that \ Björk \ ate \ the \ natto \] \] \] \end{bmatrix} \\ \begin{bmatrix} CP \ C^{0} \ [_{TP} \ Kate \ T^{0} \ [_{\nu P} \ \nu^{0} \ [_{\nu P} \ \nu^{0} \ [_{VP} \ believe \ [_{CP} \ that \ Björk \ ate \ the \ natto \] \] \] \end{bmatrix} \end{bmatrix}$

* This project explores a different take on embedding:
(i) embedding is SUBSTITUTION (Chomsky 1955, 1957)
(ii) this substitution is DELAYED (Williams 2003, 2013; Poole to appear)
(2) XP-IN-XP CONDITION

An XP can only be embedded in a structure that is also built up to an XP. (≈ Williams's (2003) *Level Embedding Conjecture*)

- (3) a. Build the embedded clause $[_{CP}$ that Björk ate the natto]

 - c. **Embed the clause** $\left[_{CP} C^0 \left[_{TP} \text{ Kate } T^0 \left[_{\nu P} \nu^0 \left[_{VP} \text{ believe } \left[_{CP} \text{ that Björk ate the natto } \right] \right] \right] \right]$

substituted in for \mathbb{CP}

 \Rightarrow I will refer to this system as *Embedding as Delayed Substitution* (EDS).

• Parallel: Embedding in LSLT¹

- In *LSLT* (and *SS*), PS-rules generate KERNEL sentences, which are then put together using GENERALIZED TRANSFORMATIONS:²
 - (4) a. **Kernel sentence A** Kate believed it.
 - b. **Kernel sentence B** Björk ate the natto.
 - c. **Substitute B into A** Kate believed [(that) Björk ate the natto].

¹ Chomsky (1955, 1957)

² The two types of transformations:
 GENERALIZED = two trees
 SINGULARLY = one tree

- In *Aspects*, Chomsky argues that singulary transformations apply to the embedded structure (4b) and the post-embedding matrix structure (4c), but they do not seem to apply to pre-embedding matrix structure (4a).³
- ⇒ Thus, generalized transformations are abandoned, and recursion is added to the base, leading (eventually) to the canonical analysis of embedding.

• Reprise in MP⁴

- There is (something like?) a reprise of the *LSLT* theory in *MP*:
 - (5) "We now adopt (more or less) the assumptions of *LSLT*, with a single generalized transformation GT that takes a phrase marker K¹ and inserts it in a designated empty position Ø in a phrase marker K, forming the new phrase marker K*, which satisfies X-bar theory." [Chomsky 1995:173]
- This approach is different from *LSLT* in that the matrix structure is not an entire clause, but rather an empty VP, NP, etc.
- GT ≈ Merge (Chomsky 2007:6)
- Parallel: TAG⁵

There is an obvious parallel to Substitution in Tree Adjoining Grammar (TAG), which I intend to visit at some point this quarter.

 \Rightarrow What differentiates EDS from these similar theories is the XP-in-XP Condition, i.e. that embedding is delayed relative to the *fseq*-size of the embedded clause.

2 The Williams Cycle

* The main motivation for EDS is the *Williams Cycle* (WC), a size-based locality constraint on (crossclausal) syntactic dependencies:⁶

(6) WILLIAMS CYCLE

Within the current XP, a syntactic operation may not target an element across YP, where Y is higher than X in the functional sequence.

[formulation from Poole to appear]

• Unless specified otherwise, we will assume a simple *fseq* for the sake of simplicity:

(7) $fseq = \langle C > T > v > V \rangle$

• Locality under the WC

- Standard locality = Binary

Under standard conceptions of locality (e.g. phases, subjacency, islands), a given syntactic domain either allows *all* operations into it (TRANSPARENT) or *no* operations into it (OPAQUE):

⁴ Chomsky (1995)

³ Chomsky (1965)

⁵ Joshi et al. (1975); Kroch and Joshi (1985)

⁶ Williams (1974, 2003, 2013); van Riemsdijk and Williams (1981)

* Williams Cycle ~> Selective opacity

Under the WC, a domain is SELECTIVELY OPAQUE to operations:⁷

(10) Selectively opaque

2.1 Movement

0 Hyperraising

- A-movement may leave finite clauses, but A-movement may not:
 - (11) a. Who does it seem $[_{CP} _$ ate the natto]?b. *Björk seems $[_{CP} _$ ate the natto].A-mvt
- But both A-movement and A-movement are possible out of nonfinite clauses:
 - (12) a. What did Kate expect $[_{TP}$ Björk to eat ____]? $\uparrow \qquad \overline{A}$ -mvt
 - b. **Björk** is expected $[_{TP} _$ to eat the natto]. $\uparrow A-mvt$
- According to the WC, the relative heights of the launching and landing sites determine whether movement is possible:
 - (11a): CP does not block movement to [Spec, CP] because $C \neq C \Rightarrow \overline{A}$ -movement possible
 - (11b): CP blocks movement to [Spec, TP] because $C > T \rightarrow A$ -movement not possible
 - (12a): TP does not block movement to [Spec, CP] because $T \neq C \Rightarrow \overline{A}$ -movement possible
 - (12b): TP does not block movement to [Spec, TP] because T \neq T \rightsquigarrow A-movement possible

(13) Movement from CP cannot land lower than CP

⁷ Terminology from Keine (2016, 2019, 2020).

2 German embedded V2⁸

Embedded V2 clauses are transparent for *wh*-movement that lands in a higher V2 clause, but disallow *wh*-movement out of them that lands inside a higher V-final clause:

(15) a. Wh-movement into V2 clause

[V2 Wen1 meinst du [V2 hat sie ____1 getroffen]]?
who think you has she met
'Who do you think that she met?'

b. Wh-movement into V-final clause

*(Ich weiß nicht) [V-final wen1 du meinst [V2 hat sie ____1 I know not who you think has she getroffen]]? met Intended: '(I don't know) who you think that she met'

– Analysis in terms of the WC:

(16) a. V2 clause = ForceP

- b. V-final clause = CP
- c. Force > C

 \Rightarrow Force > C in *fseq* \rightarrow ForceP blocks movement to [Spec, CP]

O Clitic climbing in Spanish⁹

- Finite clauses are transparent to *wh*-movement and topicalization:

(17) a. Wh-movement

A quién₁ piensa Juan [que María ha visto _____1]? A who thinks Juan that María has seen 'Who does Juan think that María saw?'

b. Topicalization

A Pedro₁ piensa Juan [que María ha visto _____1] A Pedro thinks Juan that María has seen 'Pedro, Juan thinks that María saw.'

 Clitics that cross-reference an object may appear on a higher verb, provided that the embedded clause is nonfinite and the higher verb is a restructuring verb; this is called CLITIC CLIMBING:

(18) a. Juan quiere [ver le a Pedro] Juan wants see.INF CL.DAT.3SG A Pedro
b. Juan le quiere [ver a Pedro] Juan CL.DAT.3SG wants see.INF A Pedro 'Juan wants to see Pedro'

- But clitic climbing is not possible out of finite clauses, even though these clauses allow *wh*-movement and topicalization out of them:
 - (19) a. Juan piensa [que María le ha visto a Pedro] Juan thinks that María CL.DAT.3SG has seen A Pedro 'Juan think that María saw Pedro'

⁹ Aissen and Perlmutter (1976); data from Keine (2016)

⁸ Haider (1984)

- b. *Juan **le** piensa [que María ha visto a Pedro] Juan CL.DAT.3SG thinks that María has seen A Pedro
- Analysis in terms of the WC:
 - (20) a. Finite clause = CP
 - b. Wh-movement and topicalization target [Spec, CP]
 - c. Clitic movement targets T

 \Rightarrow C > T in *fseq* \rightarrow CP blocks clitic movement to T

• For more examples

Williams (1974, 2003, 2013); Müller and Sternefeld (1993, 1996); Abels (2007, 2009, 2012a,b); Neeleman and van de Koot (2010); Müller (2014a,b); Keine (2016, 2020)

2.2 Agreement

• Hindi-Urdu agreement

(21) Agree with the highest DP not bearing a case marker. If no such DP exists, use default agreement (masculine singular).

• Agreement into a nonfinite clause

In Hindi-Urdu, it is possible for a matrix verb to agree with an embedded object across a nonfinite-clause boundary, provided that there is no closer eligible DP:¹⁰

(22)	laṛkõ-ne [roții	khaa-nii	caah-ii	
	boys-erg	bread.F	eat-inf.f.sg	want-PFV.F.SG	
	'The boys w	[Keine 2019:17]			

 \Rightarrow This phenomenon is known as long-distance agreement (LDA).¹¹

• No agreement into a finite clause

Crucially, LDA in Hindi-Urdu can never target a DP inside a finite clause, even when the DP occupies the edge position (i.e. [Spec, CP]):

(23) firoz-ne soc-aa/*-ii [(ghazal) monaa-ne (ghazal)
Firoz-ERG think-PFV.M.SG/*-PFV.F.SG ghazal.F Monaa-ERG ghazal
gaa-yii th-ii]
sing-PFV.F.SG be.PAST-F.SG
'Firoz thought that Mona had sung ghazal' [Keine 2019:25]

* Analysis in terms of the WC

- (24) a. Finite clause = CP
 - b. Nonfinite clause = TP
 - c. φ -probe is on T

 \Rightarrow Because C > T in *fseq*, a probe on T can never look into CP, even its edge.

¹⁰ Mahajan (1989); Bhatt
 (2005); Keine (2016, 2019, 2020)

¹¹ Confusingly, 'LDA' is also used to refer to longdistance anaphora.

- 2.3 Case
 - Background: Dependent Case Theory¹²
 - Whenever two DPs presently unvalued for case stand in a c-command relationship in the same local domain, assign one of the DPs DEPENDENT CASE (the exponence of which is determined at PF):
- ¹² Marantz (1991); Bittner and Hale (1996); McFadden (2004); Preminger (2011, 2014); Baker (2015)

(25)

$$\begin{bmatrix} DP_{[CASE: \Box]} \dots \begin{bmatrix} \dots DP_{[CASE: \Box]} \dots \end{bmatrix} \end{bmatrix} \xrightarrow{-or-} \begin{bmatrix} DP_{[CASE: \Box P]} \dots \begin{bmatrix} \dots DP_{[CASE: \Box P]} \dots \end{bmatrix} \end{bmatrix}$$

- Unvalued case features are realized as UNMARKED CASE at PF:
 - (26) $[CASE: \Box] \leftrightarrow UNMARKED CASE$

• Background: Finnish accusative is dependent case¹³

- In a simple transitive clause, the subject (= external argument) is nominative and the object (= internal argument) is accusative:
 - (27) **Pekka** osti **kirja-n** NOM-ACC Pekka.NOM bought book-ACC 'Pekka bought the/a book'
- Whenever the subject is absent, e.g. in a passive (28a) or in an imperative (28b), or the subject bears lexical case (28c), the object is nominative:
- (28) a. Kirja oste-ttiin NOM book.nom buy-pass.past 'The book was bought' / 'People bought the book' b. Osta kirja! NOM buy.IMP book.NOM 'Buy the/a book!' c. Minu-n täytyy osta-a kiria GEN-NOM need buy-inf/ta book.nom I-gen 'I have to buy the/a book' - Finnish also has structurally-case-marked adjuncts (durational, spatial, multiplicative) that behave in the same manner as ordinary subjects and objects:¹⁴ ¹⁴ Tuomikoski (1978); Heinämäki (1984); Mal-(29) a. **Minä** opiskelin $[vuode-n]_{ADIUNCT}$ ing (1993); Kiparsky (2001) NOM-ACC
 - I.NOM studied year-ACC 'I studied for a year' b. Opiskel-tiin [vuosi]_{ADJUNCT} NOM study-PASS.PAST year.NOM 'People studied for a year' [Kiparsky 2001:323]
 - (30) a. Subject \rightarrow NOM, Durational \rightarrow ACC, Multiplicative \rightarrow ACC Minä luotin [Kekkose-en]_{LEX} [yhde-n vuode-n] [kolmanne-n I.NOM trusted Kekkonen-ILL one-ACC year-ACC third-ACC kerra-n] time-ACC 'I trusted Kekkonen for a year for a third time'

¹³ Poole (2015); see also Maling (1993); Anttila and Kim (2011, 2017)

6

- b. Durational → NOM, Multiplicative → ACC

 [Kekkose-en]_{LEX} luote-ttiin
 [yksi vuosi]
 [kolmanne-n Kekkonen-ILL trust-PASS.PAST one.NOM year.NOM third-ACC
 kerra-n]

 time-ACC
 'Kekkonen was trusted for a year for a third time'

 c. Multiplicative → NOM

 [Kekkose-en]_{LEX} luote-ttiin
 [kolmas kerta]
 Kekkonen-ILL trust-PASS.PAST third.NOM time.NOM
- These case patterns follow straightforwardly from a DCT analysis:

'Kekkonen was trusted for a third time'

(31) Finnish accusative-case rule

If (i) DP_1 c-commands DP_2 in the same CP and (i) both DP_1 and DP_2 are unvalued for case, then assign DP_2 accusative.

• Terminological note

I will refer to the higher DP (DP_1) in (31) as the LICENSOR of dependent case.

.

- Finnish has a number of nonfinite constructions.¹⁵
- ⇒ The nonfinite construction of interest here is the ма-infinitive (traditionally, the "third" infinitive).

• Properties of MA-infinitives

• Clausal complements of certain verbs (taken from Vainikka 1989:330):

- * e.g. mennä 'go', lähteä 'leave', oppia 'learn', kieltäytyä 'refuse'
- * e.g. pakottaa 'force', pyytää 'ask', kieltää 'deny'
- **2** The verb bears the infinitival morpheme *-mA* and an inner locative case marker:

(34) Minä autoin Jukka-a {[_{TP} kirjoitta-ma-an Marja-lle] / I.NOM helped Jukka-PTV write-INF/MA-ILL Marja-ALL bussi-in } bus-ILL
'I helped Jukka { to write to Marja / onto the bus }'

¹⁵ Vainikka (1989, 1995);
 Toivonen (1995); Koskinen (1998); also Hakulinen et al. (2004:§490)

[based on Koskinen 1998:329]

[Maling 1993:59]

• Can only be modified by verbal modifiers:

(35) Minä autoin Jukka-a [TP asettu-ma-an {mukavasti /*mukava } I.NOM helped Jukka-PTV settle-INF/MA-ILL comfortably comfortable päivätorkui-lle aurinko-on] afternoon.naps-ALL sun-ILL
'I helped Jukka to sleep comfortably in the sun' [based on Koskinen 1998:325]

Transparent for movement (Toivonen 1995; Huhmarniemi 2012):

(36) **Mitä** Pekka näki Merja-n [_{TP} osta-ma-ssa ____]? what.prv Pekka.nom saw Merja-ACC buy-INF/MA-INE 'What did Pekka see Merja buying?' [Huhmarniemi 2012:197]

③ TPs, possibly *v*Ps (Koskinen 1998).

• Matrix subject → Embedded object is accusative

When the matrix clause has an ordinary nominative subject, the embedded object is marked with accusative:¹⁶

(37) Hän kävi [_{TP} avaa-ma-ssa <u>ove-n</u>] NOM-ACC s/he.NOM went open-INF/MA-INE door-ACC 'S/he went to open the door'

• No matrix subject → Embedded object is nominative

When the matrix subject is absent or bears a lexical case, the embedded object becomes nominative:

(38) Käy [_{TP} avaa-ma-ssa **ovi**]! NOM go.IMP open-INF/MA-INE door.NOM 'Go open the door!'

* Analysis

This is the same pattern from monoclausal sentences discussed above. Accordingly, (37) and (38) can be straightforwardly accounted for under DCT:

- CP is the relevant domain for dependent-case assignment.
- ма-infinitives are projections smaller than CP, namely TP.
- ⇒ Therefore, the matrix and embedded clauses constitute a single coextensive domain for dependent-case assignment.

¹⁶ I only show imperatives here, but all of the data can be replicated for passives and constructions with lexically case-marked subjects.

- On (the lack of) PRO in ма-infinitives
 - In order for the makeup of the matrix clause to affect case in MA-infinitives, there must be no local dependent-case licensor in the nonfinite clause itself.
- \Rightarrow PRO would be such a licensor.
- Option 1

There is no PRO subject in MA-infinitives.

- Option 2

There is a PRO subject in MA-infinitives, but it is inert for the purposes of dependent-case assignment.

⇒ For the sake of simplicity, I will assume the first option: there is no PRO in MA-infinitives.

.

- \Rightarrow The crucial pattern emerges when the embedding predicate has its own object.
- Matrix subject → Both objects are accusative

As expected, when the matrix subject is present, both the matrix object and the embedded object are accusative:

- Under DCT, the pattern in (41) could be modelled in one of two ways:
 - (42) Covariance derivation [Subj V Obj [TP V-MA Obj]] (43) Daisy-chain derivation [Subj V Obj [TP V-MA Obj]] [Subj V Obj [TP V-MA Obj]]

* No matrix subject \rightarrow Both objects are nominative

In the absence of a matrix subject, *both the matrix and embedded objects surface with nominative*:

- (44) a. Pakota {lapsi /*lapse-n} [TP avaa-ma-an {ovi /*ove-n}]! force.IMP child.NOM child-ACC open-INF/MA-ILL door.NOM door-ACC 'Force the child to open the door!' [Nelson 1998:238]
 - b. Pyydä { Jukka /*Juka-n } [_{TP} luke-ma-an {kirja /*kirja-n }]! ask.IMP Jukka.NOM Jukka-ACC read-INF/MA-ILL book.NOM book-ACC 'Ask Jukka to read the book!' [Vainikka 1989:268]
- (44) rules out the daisy-chain derivation. Rather, the case of the matrix and embedded objects covaries with the presence of the matrix subject, as in (42).

• Matrix object c-commands the embedded object

- Finnish third-person possessive suffixes are subject to Condition A and thus must be bound by a c-commanding antecedent:
 - (45) Poika₁ myi marsu-nsa_{1/*2}
 boy.NOM sold guinea.pig.Acc-3.Poss
 'The boy₁ sold his_{1/*2} guinea pig'

[Nelson 1998:187]

- Crucially, a third-person possessive suffix on the embedded object can be bound by the matrix object (and the matrix subject):
 - (46) **Maija**₁ pyysi **Peka-n**₂ [_{TP} tuo-ma-an levy-**nsä**_{1,2,*3}] Maija.NOM asked Pekka-ACC bring-INF/MA-ILL record.ACC-3.POSS 'Maija₁ asked Pekka₂ to bring her/his_{1,2,*3} record' [Vainikka 1989:270]

 \Rightarrow Therefore, the matrix object does c-command the embedded object.

- All else equal, the matrix object *should* then license dependent case on the embedded object. The fact that it does not thus needs to be explained.
- Adjuncts do not affect the case of the objects
 - Structurally case-marked adjuncts in the matrix clause are also unable to license dependent case into ма-infinitives:

(47) Pyydä Jukka [kolmanne-n kerra-n] [TP luke-ma-an ask.IMP Jukka.NOM third-ACC time-ACC read-INF/MA-ILL kirja] book.NOM
 'Ask Jukka for the third time to read the book!' [Maling 1993:69]

- (47) also shows that the matrix object has the *ability* to license dependent case, because it does so on the adjunct.

- ⇒ Thus, the matrix object's *inability* to license dependent case on the embedded object is all the more striking.
- When the adjunct has embedded scope, the embedded object licenses dependent case on the adjunct in an ordinary local configuration:

* Case assignment in Finnish MA-infinitives

(49) In Finnish, a matrix subject can license dependent case across an embedded TP boundary, but a matrix object and a matrix adjunct cannot.

* Analysis in terms of the WC

- (51) a. MA-infinitives are TPs
 - b. Subjects occupy [Spec, TP]
 - c. Objects and structurally-case-marked adjuncts occupy positions within vP
- \Rightarrow A DP in [Spec, TP] **can** license dependent case across TP because T \neq T.
- \Rightarrow A DP in [Spec, vP] or lower **cannot** license dependent case across TP because T > v.

• Upshot

There is nothing special about case in MA-infinitives. The same general case mechanism applies everywhere in the language as syntactic structure is built up—but this mechanism is constrained by the WC.

2.4 Interim summary

(53) WILLIAMS CYCLE

Within the current XP, a syntactic operation may not target an element across YP, where Y is higher than X in the functional sequence.

[formulation from Poole to appear]

• Nonbinary locality

The locality imposed by the WC is *nonbinary*, unlike the more standard conceptions of locality, e.g. phases and subjacency.

Size matters

Under the WC, size matters: A smaller clause is permeable to more operations than a larger clause, because the maximal projection of a smaller clause will be lower in *fseq* than the maximal projection of a larger clause.

• Domain-general

WC effects have been observed in a variety of empirical domains:

- movement (e.g. Williams 1974, 2003, 2013; Müller and Sternefeld 1993, 1996; Abels 2007, 2009, 2012a,b; Neeleman and van de Koot 2010; Müller 2014a,b)
- agreement (Keine 2016, 2019, 2020)
- case (Poole to appear)

3 Analysis

3.1 Proposal

 $\Rightarrow TL;DR$ EDS + Strict Cycle condition \Rightarrow WC

• Review: The strict cycle

- Syntactic operations are subject to the STRICT CYCLE:¹⁷

(54) STRICT CYCLE CONDITION

Within the current XP α , a syntactic operation may not exclusively target an item in the domain of another XP β if β is in the domain of α .

[formulation from Müller 2017]

(55) **Domain**

The domain of a head X is the set of nodes dominated by XP that are distinct from and do not contain X.

- The SCC rules out countercyclic operations: downwards movement, sidewards movement, retroactive movement, etc.
- ✓ In essence, the strict cycle only allows syntactic operations that target the ROOT of the structure (and potentially something else lower), which crucially changes as the structure is built up (boxed/green = accessible on the strict cycle):

¹⁷ Chomsky (1973, 1995, 2001, 2008)

* Embedding as delayed substitution (EDS)

(57) **XP-IN-XP CONDITION**

An XP can only be embedded in a structure that is also built up to an XP.

• Substitution nodes

Let us assume that substitution targets SUBSTITUTION NODES, which are encoded for category; notated as XP:

(58) Upon merging X^0 with YP, for every XP in YP, replace it with a built-up XP.

- There are at least two additional advantages to category-bearing substitution nodes:
 - 1. Selection can still be satisfied locally.
 - 2. The substitution node itself can move within the matrix clause prior to embedding, thereby allowing for short movement of clauses within vP.¹⁸

\Rightarrow The basic idea

Under EDS, a clause may get embedded too late for a given dependency to be established.

* Deriving the WC

A root XP containing an embedded YP (where Y > X) never exists in the course of a derivation:

(59)	a.	$\left[_{\mathrm{XP}} \mathrm{X}^{0} \ldots \left[_{\mathrm{YP}} \ldots \right. \right] \right]$	(where $Y > X$ and XP is the root node)
	b.	$[_{YP} Y^0 \dots [_{XP} \dots [_{YP} \dots$	(where $Y > X$ and YP is the root node)

 No operation that is triggered in XP—whether it be movement, agreement, or case can look into a YP (where Y > X) because the relevant structure where X and [Spec, XP] would have access to YP within the strict cycle is simply not created by the grammar.

 \Rightarrow Under EDS, all of the WC effects are uniformly derived from the timing of embedding.

¹⁸ Such movement has been argued for recently by Moulton (2015) and Bruening (2018), though see Williams (2013:104-107).

3.2 Application to hyperraising

(60) BAN ON HYPERRAISING

A-movement may not leave a finite clause.

- (61) a. Who does it seem $[_{CP} _$ ate the natto]? b. *Björk seems $[_{CP} _$ ate the natto]. A-mvt = 1
- Under EDS, at no point in the derivation is there a root TP that contains the embedded CP. Thus, an element in CP cannot move to [Spec, TP] while TP is the root node (62).
- The only point at which the embedded CP is embedded in the matrix clause is when both clauses are built up to the CP-level, at which point, movement to [Spec, TP] would violate the strict cycle (63).

 \Rightarrow Under EDS, the structure that would allow for violating the Ban on Hyperraising is simply never created by the grammar. Therefore, hyperraising is ungrammatical.

3.3 Application to Finnish

- (64) In Finnish, a matrix subject can license dependent case across an embedded TP boundary, but a matrix object and a matrix adjunct cannot.
- Because MA-infinitives are TPs, they are embedded when the matrix clause has itself been built up to the TP level.
- ⇒ As a result, DPs lower than TP in the matrix clause are unable to license dependent case on a DP embedded in a MA-infinitive (i.e. a TP):
 - When they are accessible on the strict cycle, the MA-infinitive is not yet present.
 - When the ма-infinitive is present, they are no longer accessible on the strict cycle.

• Derivation: With a matrix subject

The matrix subject is located in [Spec, TP]. Thus, it enters the derivation *after* the MA-infinitive has been embedded, and licenses dependent case on both objects.¹⁹

• Derivation: Without a matrix subject

- The matrix object is located below TP. Thus, it enters the derivation *before* the ма-infinitive has been embedded.
- At the point when the ма-infinitive is embedded in the matrix clause, the matrix object cannot license dependent case given the strict cycle.
- Therefore, both the matrix and embedded objects remain unvalued for case and are assigned nominative case at PF.
- (67) Pakota **lapsi** [TP avaa-ma-an **ovi**]! force.IMP child.NOM open-INF/MA-ILL door.NOM 'Force the child to open the door!' [Nelson 1998:238]

• Adjuncts

Assuming that durational, spatial-measure, and multiplicative adjuncts are merged below TP, they too are unable to license dependent case, following the same logic as for the matrix object.

4 Potential exceptions to the Williams Cycle

- Let us refer to our formulation of the WC as the STRONG WC:
 - (69) WILLIAMS CYCLE

```
(strong version)
```

Within the current XP, a syntactic operation may not target an element across YP, where Y is higher than X in the functional sequence.

[formulation from Poole to appear]

- Abels (2007, 2009) argues that the strong WC is empirically too restrictive because it rules out several purported movement dependencies.
- \Rightarrow This criticism extends to EDS, since it derives the strong WC.
- The recent, operation-specific analyses of WC effects have taken these purported exceptions at face value and gone on to develop analyses that derive weaker versions of the WC:
 - Merge-based: Abels (2007, 2009), Müller (2014a,b)
 - AGREE-based: Keine (2016, 2019, 2020)

* What Poole (to appear) contends

The purported exceptions to the strong WC should be revisited and reanalyzed.

- First, no AGREE-based implementations of DCT have been proposed in the literature. Thus, given the state-of-the-art, it is not presently possible to directly extend Keine's analysis to case.
- Second, Keine's analysis handles the exceptions largely through a stipulation. In a nutshell, some AGREE-probes are not subject to the WC.²⁰
- In light of these two points, it is not at all certain that abandoning the strong WC is warranted based on a set of limited exceptions, especially given the importance of the strong WC's operation-generality.

²⁰ In his terms, they do not have a 'horizon'.

 At the very least, the introduction of WC effects for case into the empirical landscape warrants subjecting the purported exceptions to closer scrutiny.²¹

²¹ WC effects for case = 'improper case'

²² Postal (1974)

4.1 ECM/AcI

* The problem

- In ECM infinitives, it is commonly assumed that the embedded subject moves from inside the embedded TP to a *v*P-internal position in the matrix clause:²²

(70) Alex believes $\begin{bmatrix} vP \\ vP \end{bmatrix}$ (with all her heart) $\begin{bmatrix} TP \\ u \end{bmatrix}$ to be guilty $\begin{bmatrix} TP \\ u \end{bmatrix}$.

- According to the strong WC, TP should be a barrier for such movement because T > v in *fseq*.
- Note that under the WC, the matrix subject can establish a dependent-case relationship with matrix [Spec, *v*P] or embedded [Spec, TP], so the actual case in ECM is unproblematic.

0 Alternative: Neeleman and Payne (2020)

- On the basis of scope-freezing effects and adverb order, Neeleman and Payne argue that an ECM infinitive does not actually involve moving the embedded subject, but rather extraposing part of the embedded clause rightwards:
 - (71) Alex believes [_{TP} **Taylor**] (with all her heart) [to be guilty].
- ⇒ If this analysis is on the right track, then ECM infinitives do not pose a problem for the strong WC after all.

2 Alternative: Not TPs

- Wurmbrand (2014) independently argues that English infinitives can be smaller than TP, e.g. vP.
- If ECM infinitives are (or can be) *v*Ps, then movement out of them to the matrixobject position does not violate the WC, because $v \neq v$.

4.2 Movement over complementizers

* The problem

In some languages, movement that lands below a complementizer is able to cross that same complementizer to move to a higher clause. On the WC, this is contradiction.

• Illustration: English topicalization

- In an embedded clause, topicalization lands in a position below *that*:
 - (72) Alex thinks [_{CP} (that) Taylor (*that) no one likes ____] ↑ topicalization
- \Rightarrow C > Top in *fseq*

- Topicalization can cross an embedded finite clause boundary, moving over *that*:

(73) **Taylor**, Alex thinks [_{CP} **that** no one likes ____].

 \Rightarrow Top > C in *fseq*

1 Alternative: Edge markers

- Complementizers in these languages are edge markers that uniformly appear at the clause boundary, rather than real C heads.²³
- More concretely: These "complementizers" are elements that merge at the edge of a clause, but do not project, so that the category of the clause remains unchanged:

(74) XP that XP

- Under such an analysis, a moved element appearing to the right of a complementizer would not entail that the complementizer corresponds to a projection higher than the landing site of movement.
- Therefore, it would not constitute a violation of the strong WC if that movement can also cross the complementizer.

2 Alternative: Derived CPs

 Angelopoulos (2019) argues that (at least some) CPs are *derived* constituents: the complementizer is actually merged in the matrix clause and triggers movement of the clause:

- On such an approach, complementizers are not indicative of a clause's *fseq*-size.

²³ Along the lines of Manetta's (2006, 2011) proposal for Hindi-Urdu ki.

4.3 Hyperraising

* The pr	roblem			
– Seve	ral languages have been claimed to allow h	yperraising: ²⁴		
(76)	Lubukusu (Bantu)			
	Babaandu ₁ ba-lolekhana [(mbo)	1 ba-kwa]		
	2.people 2SA-seem that	2SA.PAST-fall		
	'The people seem like they fell'	[Carstens and Diercks 2013:100]		

- Because the WC expressly prohibits hyperraising, if (76) is indeed hyperraising, it is problematic for the WC.

• A closer look at Carstens and Diercks (2013)

- Carstens and Diercks report on three Bantu languages: Digo, Lubukusu, and Lusaamia.
- Digo and Lusaamia crucially do not allow hyperraising over complementizers.
- Some Lubukusu speakers allow hyperraising over complementizers, but only the complementizer *mbo* and not the agreeing complementizer *-li*.
- They analyze this pattern as follows:
 - (77) a. CPs are generally barriers to hyperraising because they are phases.
 - b. Finite clauses without complementizers are TPs in Bantu, not CPs.
 - c. *mbo* in Lubukusu is special in that it is not a phase head, thereby projecting a nonphasal CP that is not a barrier to hyperraising.
- Under the WC, TP is not a barrier for movement to [Spec, TP], since T ≯ T in *fseq*, irrespective of whether the TP is considered finite or nonfinite.
- ⇒ On Carstens and Diercks's analysis then, hyperraising out of complementizer-less clauses is in fact compatible with the strong WC.
- This leaves *mbo*-clauses in Lubukusu, which might be analyzed using one of the solutions sketched above for movement-over-complementizers.

\Rightarrow The question

Can this reanalysis be applied to all of the purported cases of hyperraising?

4.4 LDA into finite clauses

* The problem

- There are several languages that have been reported to allow agreement between a matrix verb and a DP at the *edge* of an embedded finite clause.²⁵
- This is problematic for the WC because CP should be a barrier to a φ -probe on T⁰, because C > T in *fseq*.

²⁵ Bruening (2001); Branigan and MacKenzie (2002); Polinsky and Potsdam (2001); see also Chung (1982, 1994); Chung and Georgopoulos (1988); Deal (2017)

 ²⁴ Alexiadou and Anagnostopoulou (2002); Nunes (2008); Carstens (2011); Diercks (2012); Carstens and Diercks (2013); Halpert (2015, 2019)

1 Alternative: Indirect LDA

- These cases of LDA can be reanalyzed in a way compatible with the strong WC:²⁶
 - (78) a. The embedded DP moves to embedded [Spec, CP].
 - b. The DP's features percolate up to CP via Spec-Head agreement.
 - c. Matrix T^0 agrees with the CP.
- Under EDS, matrix T⁰ would agree with the CP before the full CP has been subbed in. Upon embedding the CP, the CP's features must be shared along (or match) its existing AGREE-relations.

2 Alternative: Higher probe

The φ -probe resides higher in the clause, i.e. on C, and thus can look into CP, because C \neq C.

4.5 Sakha accusative subjects

* The problem

- In Sakha, an embedded subject can be assigned dependent case (= accusative) iff the matrix clause has another DP.²⁷
- Baker and Vinokurova analyze this pattern in terms of raising: the embedded subject is eligible to move to embedded [Spec, CP], where it may then enter into dependent-case relationships with DPs in the matrix clause.

(79) min ehigi(-ni)₁ [bügün ____1 kyaj-yax-xyt dien]
I.NOM you -ACC today win-FUT-2PL.SA that
erem-mit-im
hope-PAST-1SG.SA
'I hoped that you would win today' [Baker and Vinokurova 2010:615]

- This analysis is problematic for the strong WC because CP should be a barrier for DPs in the matrix clause.

• Alternative: Prolepsis

- Accusative subjects in Sakha are actually proleptic arguments: they are basegenerated as an argument of the matrix clause and are indirectly linked to an embedded gap via resumption:²⁸
 - (80) $DP \dots \underline{DP}_1 \dots [_{CP} \dots pro_1 \dots]$
- This analysis is in the spirit of COMPLEX PREDICATES in Den Dikken (2017, 2018).
- As an argument of the matrix clause, the proleptic DP participates in the dependent-case calculus in the matrix clause, and thus is sensitive to the DPs there.
- Under a prolepsis analysis, Sakha accusative subjects are not problematic for the strong WC—as no crossclausal syntactic dependencies are involved.

²⁸ I depict the resumptive as *pro* for the sake of simplicity. The syntax in the embedded clause might be more complicated, e.g. movement of a null operator.

²⁶ This analysis is similar in spirit to Koopman's (2006) analysis of Tsez LDA, in that there is no direct crossclausal agreement.

²⁷ Baker and Vinokurova (2010); Baker (2015)

5 Phases

• Question

What is the relationship between the WC and phases?

5.1 Problems with vP phases

• Movement from [Spec, CP] to [Spec, vP]

Successive-cyclic movement from [Spec, CP] to [Spec, vP] violates the WC because C > v in *fseq*:

(81)	$[_{CP}$ what Kate $[_{\nu P}$	be	elieve [_{CP} _	th	at Björk [_{vP} _	[;	ate]]]]]
	1	↑		11		↑		

2 Moving through [Spec, vP] neutralizes crucial distinctions

- Consider hyperraising. Virtually any analysis of hyperraising needs to know if the moving DP is moving from a finite clause or from a nonfinite clause:

(82) a.
$$\begin{bmatrix} TP & T^0 & \dots & \begin{bmatrix} nonfinite-clause/TP & DP & \dots & \\ & & & & \end{bmatrix}$$

b. $* \begin{bmatrix} TP & \dots & T^0 & \dots & \begin{bmatrix} finite-clause/CP & DP & \dots & \\ & & & & & \end{bmatrix}$

- If movement proceeds successive-cyclically through [Spec, *v*P], at the point at which movement to [Spec, TP] occurs, the moving DP would be in [Spec, *v*P]:

(83) a.
$$\begin{bmatrix} TP & T^0 & \dots & \begin{bmatrix} vP & DP & v^0 & \begin{bmatrix} & \dots & \begin{bmatrix} nonfinite-clause/TP & DP & \dots & \end{bmatrix} \end{bmatrix}$$

b. $\begin{bmatrix} TP & T^0 & \dots & \begin{bmatrix} vP & DP & v^0 & \begin{bmatrix} & \dots & \begin{bmatrix} finite-clause/CP & DP & \dots & \end{bmatrix} \end{bmatrix}$

- ⇒ To determine whether the DP moved out of a CP or a TP, it would be necessary to *backtrack* into the previous phase. Computing the locality of movement would thus have to be radically nonlocal.
- This problem generalizes to other WC effects involving movement.

5.2 Solution: Buffers

- Müller (2014a) proposes a technical solution to this problem that allows the locality of movement to be computed locally.
- First, each position that an element moves through is recorded in a BUFFER attached to that element.
- Second, at criterial positions, the buffer is evaluated against a constraint that essentially checks whether the movement chain obeys the WC.
- While this analysis provides an account for the WC with successive-cyclic movement through [Spec, *v*P], it does not extend to dependent-case assignment or AGREE, which also exhibit WC effects.

5.3 Solution: No vP phases

* The idea

If vP is not a phase (contra Chomsky 2000, 2001), then phases are not a problem for the WC. The two would be mutually compatible.

• Finnish ма-infinitives (again)

- Recall that in Finnish, a dependent-case relationship between two DPs can span across a nonfinite clause boundary:
 - (84) a. **Hän** kävi [avaa-ma-ssa <u>ove-n</u>] 3SG.NOM went open-INF/MA-INE door-ACC 'She/he/they_{sG} went to open the door'
 - b. Käy [avaa-ma-ssa **ovi**]! go.IMP open-INF/MA-INE door.NOM 'Go open the door!'
- The configuration in (84a) crucially involves a dependent-case relationship across *two v*Ps, which the weak and strong PIC alike predict to be impossible:

(85)
$$\begin{bmatrix} TP & DP_{[CASE: \Box]} & T^0 \end{bmatrix} \begin{bmatrix} vP & v^0 \end{bmatrix} V^0 \begin{bmatrix} vP & V^0 \end{bmatrix} \begin{bmatrix} DP_{[CASE: \Box]} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

- Could we delay Spellout even more, namely to the *next-next-highest* phase, essentially applying Chomsky's (2001) logic for positing the weak PIC?
- This solution would not work because the dependent-case relationship can span across multiple nonfinite clause boundaries:
 - (86) Hän halusi [käy-dä [avaa-ma-ssa <u>ove-n</u>]] 3SG.NOM wanted go-INF/TA open-INF/MA-INE door-ACC 'She/he/they_{sG} wanted to go open the door'
- \Rightarrow In sum, dependent-case assignment can cross arbitrarily-many vP projections, contra the PIC.

2 Agreement in Hindi-Urdu (Keine 2017)

- In Hindi-Urdu, φ -agreement does not involve movement of the agreement controller:
 - (87) a. Idiomatic objects can control agreement
 raam-ne bhains ke aage biin bajaa-yii
 Ram-ERG buffalo in.front.of flute.F.SG play-PFV.F.SG
 'Ram did something futile.' (*lit.* 'Ram played the flute in front of buffalo.')
 [Keine 2017:178]
 b. Idiomatic objects resist movement

biin₁ raam-ne bhains ke aage ____1 bajaa-yii flute.F.SG Ram-ERG buffalo in.front.of play-PFV.F.SG 'The flute, Ram played in front of buffalo.' (*idiomatic reading deviant*) [Keine 2017:179]

- As we saw above, Hindi-Urdu also allows LDA into nonfinite clauses. Idiomatic objects—which cannot move—can control LDA:
 - (88) raam-ne [bhains ke aage biin bajaa-nii] caah-ii
 Ram-ERG buffalo in.front.of flute.F.SG play-INF.F.SG want-PFV.F.SG
 'Ram wanted to do something futile.' (*idiomatic reading possible*)

[Keine 2017:179]

- The configuration in (88) crucially involves an AGREE-dependency across *two v*Ps, which the weak and strong PIC alike predict to be impossible:

(89)
$$\begin{bmatrix} TP & T_{[\star\phi\star]}^{0} \end{bmatrix} \begin{bmatrix} v^{0} & v^{0} \end{bmatrix} \begin{bmatrix} vP & v^{0} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

- Like with dependent-case assignment, this AGREE-dependency can extend across multiple nonfinite clause boundaries:

(90)	?raam-ne	[[bhains	ke aage	biin	bajaa-nii] shuruu	
	Ram-erg		buffalo	in.front.of	flute.F.SG	play-INF.F.SG	start	
	kar-nii] caah-	ii				
do-inf.f.sg want-pfv.f.sg								
'Ram wanted to start doing something futile.' (idiomatic reading possible)								
							[Keine 2017:180]	

 \Rightarrow In sum, φ -agreement can cross arbitrarily-many vP projections, contra the PIC.

• Other in-situ dependencies

The same line of argumentation can be applied to:

- Wh-licensing (Keine 2017)
- Negative concord (Keine and Zeijlstra 2021)

5.4 Solution: Phases as operational domains

⇒ While *v*P not being a phase would solve the two problems outlined above, there is, I think, perhaps some utility in having *v*P as a phase.

0 Case domains

- Baker (2015) demonstrates the usefulness of 'keying' different dependent-case rules to CP and vP both within a language and across languages.
- For example, a somewhat common setup is that dependent case assigned in *vP* is realized as "dative", and dependent case assigned in CP is realized as "accusative".
- He shows how this kind of parameterization straightforwardly accounts for a broad crosslinguistic typology of different case patterns.

2 Timing of dependent-case assignment

 Most of the potential complications concerning the timing of dependent-case assignment are avoided if dependent case is assigned as early as possible in the derivation:²⁹

(91) EARLINESS

Upon (re)merging α into the structure, if α c-commands β and both α and β have unvalued case features, establish a dependent-case relationship between α and β . [Poole to appear]

- However, there are several case patterns documented in the literature that appear to involve dependent case being calculated *after* DPs in *v*P have rearranged themselves via movement, contra (91).
- For example, Yuan (2018, 2020) argues that in Inuit, the object must raise over the subject in order to license dependent ergative case on the subject in a downwards configuration:

- Similar case patterns:
 - * ergative case in Koryak (Abramovitz 2020:27-30)
 - * Nez Perce applicatives of unaccusatives (Deal 2019)
 - * possibly all object-shift ergative languages (in the sense of Woolford 2015)
- ⇒ These case patterns can all be handled by assuming that dependent case is calculated at the vP-phase level, after DPs can have moved within vP.³⁰

8 Adjunction

- Zyman (to appear) observes that *exactly* in colloquial English can only be stranded at phase edges:
 - (93) a. What had she $[_{\nu P} \{ exactly \} been \{ *exactly \} sent ___]?$
 - b. What had she $[_{\nu P} \{ exactly \} been \{ *exactly \} being \{ *exactly \} sent ____]?$
 - c. What do you believe [CP {exactly} that {*exactly} (,) for some reason, she devoured _____ on Sunday]? [Zyman to appear:25, 29]
- He proposes that this pattern of stranding follows from adjuncts being obligatorily late-merged at the phase-level, after the *wh*-phrase has moved to the phase edge, thereby prohibiting their stranding in phase-internal positions.

⇒ Starting intuition

The arguments for the utility of vP phases do not involve the PIC, but rather a point in the derivation of a clause when certain operations are triggered.

²⁹ Poole (to appear)

³⁰ It is also possible, I believe, to account for these case patterns in terms of case domains: in these languages, there is a dependent-case rule keyed to CP, but none to vP.

* Proposal

- Phases are OPERATIONAL DOMAINS: the inputs to certain syntactic operations, e.g. linearization and dependent-case assignment.
- There is no PIC. As such, phases are not locality domains per se. Successive-cyclic movement is enforced by cyclic linearization (Fox and Pesetsky 2005).
- Phase-level operations operate over whatever structure is present at the time of their application. Embedded clauses will thus "escape" a phase-level operation if they have not yet been subbed in.
- Spellout = the application of phase-level operations

• Timing of embedding

(94) Upon merging X^0 with YP, for every XP in YP, replace it with a built-up XP.

• Order of operations at the phase level

- 1. Merge in the phase head H^0 .
- 2. Embed any HPs in accordance with (94).
- 3. Satisfy the features on H⁰.
- 4. Spellout the entire HP phase.

• Illustration: Long wh-movement

(95) An ordering statement of the form $\alpha < \beta$ is understood by PF as meaning that the last element dominated by α and not dominated by a trace precedes the first element dominated by β and not dominated by a trace.

[Fox and Pesetsky 2005:10]

 \mathbb{CP}

d. **Resulting linearization** wh C Subj T $v V C_e TP_e$

• Linearizing substitution nodes

- *Option 1:* Linearize XP at matrix *v*P. Update the ordering statements involving XP at matrix CP, after XP has been embedded.
- **Option 2:** Do not linearize XP.
- Deciding between these two options, I believe, depends on how we conceptualize substitution nodes: as the head of the embedded clause (Williams 2003) or as a specialized node (à la TAG).

• Problem: Case and agreement

- Because there is no PIC, there is nothing preventing AGREE or dependent-case assignment from crossing arbitrarily-many *v*P projections.
- The barrierhood of CP for case and agreement follows from the WC/EDS. As C > T, elements in matrix TP are unable to interact with elements in embedded CPs.
- Problem: vP-phasehood and the WC
 - On this proposal, there is no movement from [Spec, CP] to [Spec, vP]. Thus, the problems that such movement creates simply do not arise.
 - All crossclausal movement proceeds directly from the embedded clause. Movement from TP and CP is thus not neutralized—as desired.
 - There is no need to resort to backtracking or nonlocal analyses of the locality of movement.

• Problem: vP phases are useful

- All of the "useful" properties of *v*P phases are maintained on this proposal, albeit only clause-internally.
- As far as I can tell, this limitation is unproblematic for case, adjunction, and linearization. The use of vP phases in these domains has almost entirely been motivated on clause-bounded phenomena.

\Rightarrow Consequence

Clause-internal phases (i.e. vPs) only affect clause-internal elements (modulo embedded vPs), because clause-internal phases undergo Spellout *before* embedded clauses have been embedded.

• In particular, successive-cyclic movement only passes through [Spec, *v*P] in the *local clause*:

```
(97) \begin{bmatrix} CP & what Kate \begin{bmatrix} \nu P & believe \begin{bmatrix} CP & \\ -P & - \end{bmatrix} & that Björk \begin{bmatrix} \nu P & \\ -P & - \end{bmatrix} \begin{bmatrix} ate & \\ -P & - \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix}
```

* Prediction

In cases where movement triggers some reflex of successive cyclicity R, we should find two patterns:

1. *The symmetric pattern* R manifests (in the same way) in each clause traversed ⇒ CP-phase effect

– E.g. complementizer switch, auxiliary inversion

2. The asymmetric pattern

R manifests differently in the local clause than in the nonlocal clauses $\Rightarrow v P$ -phase effect

• Subtype of the asymmetric pattern

R may manifest only in the local clause, but it may *not* manifest only in the nonlocal clauses.

References

- Abels, Klaus. 2007. Towards a restrictive theory of (remnant) movement. In *Linguistic Variation Yearbook* 7, eds. Jeroen van Craenenbroeck and Johan Rooryck, 53–120. Amsterdam: John Benjamins.
- Abels, Klaus. 2009. Some implications of improper movement for cartography. In *Alternatives to Cartography*, ed. Jeroen van Craenenbroeck, 325–359. Berlin: de Gruyter.
- Abels, Klaus. 2012a. The Italian left periphery: A view from locality. *Linguistic Inquiry* 43:229–254.
- Abels, Klaus. 2012b. Phases: An Essay on Cyclicity in Syntax. Berlin: de Gruyter.
- Abramovitz, Rafael. 2020. Successive-cyclic *wh*-movement feeds case competition in Koryak. Ms., MIT.
- Aissen, Judith, and David Perlmutter. 1976. Clause reduction in Spanish. In *Proceedings* of the 2nd Annual Meeting of the Berkeley Linguistics Society. 1-30: Berkeley Linguistics Society.
- Alexiadou, Artemis, and Elena Anagnostopoulou. 2002. Raising without infinitives and the nature of agreement. In *Dimensions of Movement: From Features to Remnants*, eds.

Artemis Alexiadou, Elena Anagnostopoulou, Sjef Barbiers, and Hans-Martin Gärtner, 17–30. Amsterdam: Benjamins.

- Angelopoulos, Nikos. 2019. Complementizers and prepositions as probes: Insights from Greek. Ph.D. dissertation, University of California, Los Angeles.
- Anttila, Arto, and Jong-Bok Kim. 2011. On structural case in Finnish and Korean. *Lingua* 121:100–127.
- Anttila, Arto, and Jong-Bok Kim. 2017. Locality and variation in Finnish structural case. *Natural Language and Linguistic Theory* 35:581–634.
- Baker, Mark. 2015. Case. Cambridge, UK: Cambridge University Press.
- Baker, Mark, and Nadya Vinokurova. 2010. Two modalities of case assignment: Case in Sakha. *Natural Language and Linguistic Theory* 28:593–642.
- Bhatt, Rajesh. 2005. Long distance agreement in Hindi-Urdu. *Natural Language and Linguistic Theory* 23:757–807.
- Bittner, Maria, and Kenneth Hale. 1996. The structural determination of case and agreement. *Linguistic Inquiry* 27:1–68.
- Branigan, Phil, and Marguerita MacKenzie. 2002. Altruism, A'-movement and object agreement in Innu-aimûn. *Linguistic Inquiry* 33:385-407.
- Bruening, Benjamin. 2001. Syntax at the edge: Cross-clausal phenomena and the syntax of Passamaquoddy. Ph.D. dissertation, MIT, Cambridge, MA.
- Bruening, Benjamin. 2018. CPs move rightward, not leftward. Syntax 21:362-401.
- Carstens, Vicki. 2011. Hyperactivity and hyperagreement in Bantu. Lingua 121:721-741.
- Carstens, Vicki, and Michael Diercks. 2013. Parameterizing case and activity: Hyperraising in Bantu. In *Proceedings of the 40th Meeting of the North East Linguistic Society (NELS 40)*, eds. Seda Kan, Claire Moore-Cantwell, and Robert Staubs, 99–118. Amherst, MA: GLSA.
- Chomsky, Noam. 1955. The logical structure of linguistic theory. Ms., Harvard & MIT. Published in part by Plenum, New York, 1975.
- Chomsky, Noam. 1957. Syntactic Structures. The Hague: Mouton.
- Chomsky, Noam. 1965. Aspects of the theory of syntax. Cambridge, MA: MIT Press.
- Chomsky, Noam. 1973. Conditions on transformations. In *A Festschrift for Morris Halle*, eds. Stephen Anderson and Paul Kiparsky, 232–286. New York: Academic Press.
- Chomsky, Noam. 1995. The Minimalist Program. Cambridge, MA: MIT Press.
- Chomsky, Noam. 2000. Minimalist inquiries: The framework. In *Step by step: Essays on minimalist syntax in honor of Howard Lasnik*, eds. Roger Martin, David Michaels, and Juan Uriagereka, 89–155. Cambridge, MA: MIT Press.
- Chomsky, Noam. 2001. Derivation by phase. In *Ken Hale: A life in language*, ed. Michael Kenstowicz, 1–52. Cambridge, MA: MIT Press.
- Chomsky, Noam. 2007. Approaching UG from below. In *Interfaces + Recursion = Language?*, eds. Uli Sauerland and Hans-Martin Gärtner, 1–31. Berlin: Mouton de Gruyter.
- Chomsky, Noam. 2008. On phases. In *Foundational issues in linguistic theory: Essays in honor of Jean-Roger Vergnaud*, eds. Robert Freidin, Carlos Otero, and Maria Luisa Zubizarreta, 133–166. Cambridge, MA: MIT Press.
- Chung, Sandra. 1982. Unbounded dependencies in Chamorro grammar. *Linguistic Inquiry* 13:39–77.
- Chung, Sandra. 1994. *Wh*-agreement and "referentiality" in Chamorro. *Linguistic Inquiry* 25:1–44.
- Chung, Sandra, and Carol Georgopoulos. 1988. Agreement with gaps in Chamorro and Palauan. In *Agreement in Natural Language: Approaches, theories, description*, eds. Michael Barlow and Charles A. Ferguson, 251–267. Stanford, CA: CSLI Publications.
- Deal, Amy Rose. 2017. Covert hyperraising to object. In Proceedings of the 47th Meeting

of the North East Linguistic Society (NELS 47), eds. Andrew Lamont and Katie Tetzloff, 257–270. Amherst, MA: GLSA.

Deal, Amy Rose. 2019. Raising to ergative: Remarks on applicatives of unaccusatives. *Linguistic Inquiry* 50:388–415.

Diercks, Michael. 2012. Parameterizing case: Evidence from Bantu. Syntax 15:253-286.

- den Dikken, Marcel. 2017. Predication in the syntax of hyperraising and copy raising. *Acta Linguistica Academica* 64:3–43.
- den Dikken, Marcel. 2018. Secondary predication and the distribution of raising to object. *Acta Linguistica Academica* 65:87–117.
- Fox, Danny, and David Pesetsky. 2005. Cyclic linearization of syntactic structure. *Theoretical Linguistics* 31:1–45.
- Haider, Hubert. 1984. Topic, focus, and V-second. *Groninger Arbeiten zur Germanistischen Linguistik* 25:72–120.
- Hakulinen, Auli, Maria Vilkuna, Riita Korhonen, Vesa Koivisto, Tarja Riita Heinonen, and Irja Alho. 2004. *Iso suomen kielioppi*. Helsinki: Suomalaisen Kirjallisuuden Seura.
- Halpert, Claire. 2015. *Argument licensing and agreement*. Oxford: Oxford University Press.
- Halpert, Claire. 2019. Raising, unphased. *Natural Language and Linguistic Theory* 37:123–165.
- Heinämäki, Orvokki. 1984. Aspect in Finnish. In Aspect bound: A voyage into the realm of Germanic, Slavonic and Finno-Ugrian aspectology, 153–177. Dordrecht: Foris.
- Huhmarniemi, Saara. 2012. Finnish A'-movement: Edges and islands. Ph.D. dissertation, University of Helsinki.
- Joshi, Aravind K., Leon S. Levy, and Masako Takahashi. 1975. Tree adjunct grammars. Journal of Computer and System Sciences 10:136–163.
- Keine, Stefan. 2016. Probes and their horizons. Ph.D. dissertation, University of Massachusetts, Amherst, MA.
- Keine, Stefan. 2017. Agreement and *vP* phases. In *A Schrift to Fest Kyle Johnson*, eds. Nicholas LaCara, Keir Moulton, and Anne-Michelle Tessier, 177–185. Amherst, MA: Linguistics Open Access Publications.
- Keine, Stefan. 2019. Selective opacity. Linguistic Inquiry 50:13-62.
- Keine, Stefan. 2020. Probes and Their Horizons. Cambridge, MA: MIT Press.
- Keine, Stefan, and Hedde Zeijlstra. 2021. Morphology of extraction: Reassessing vP phasehood. Ms., UCLA & Universität Göttingen.
- Kiparsky, Paul. 2001. Structural case in Finnish. Lingua 111:315–376.
- Koopman, Hilda. 2006. Agreement configurations: In defense of "Spec head". In *Agreement systems*, ed. Cedric Boeckx, 159–199. Amsterdam: John Benjamins.
- Koskinen, Päivi. 1998. Features and categories: Non-finite constructions in Finnish. Ph.D. dissertation, University of Toronto.
- Kroch, Anthony, and Aravind K. Joshi. 1985. The linguistic relevance of Tree Adjoining Grammar. Technical Report MS-CIS-85-16, University of Pennsylvania.
- Mahajan, Anoop. 1989. Agreement and agreement phrases. In *Functional heads and clause structure*, eds. Itziar Laka and Anoop Mahajan, volume 10 of *MIT Working Papers in Linguistics*, 217–252. Cambridge, MA: MITWPL.
- Maling, Joan. 1993. Of nominative and accusative. In *Case and other functional categories in Finnish syntax*, eds. Anders Holmberg and Urpo Nikanne, 49–74. Berlin: Mouton de Gruyter.
- Manetta, Emily. 2006. Peripheries in Kashmiri and Hindi-Urdu. Ph.D. dissertation, University of California, Santa Cruz, CA.
- Manetta, Emily. 2011. Peripheries in Kashmiri and Hindi-Urdu: The Syntax of Discourse-Driven Movement. Amsterdam: John Benjamins.

- Marantz, Alec. 1991. Case and licensing. In *Proceedings of the 8th Eastern States Conference on Linguistics (ESCOL 8)*, eds. German Westphal, Benjamin Ao, and Hee-Rahk Chae, 234–253. Ithaca, NY: CLC Publications.
- McFadden, Thomas. 2004. The position of morphological case in the derivation: A study on the syntax-morphology interface. Ph.D. dissertation, University of Pennsylvania, Philadelphia, PA.
- Moulton, Keir. 2015. CPs: Copies and compositionality. *Linguistic Inquiry* 46:305–342. Müller, Gereon. 2014a. A local approach to the Williams Cycle. *Lingua* 140:117–136.
- Müller, Gereon. 2014b. *Syntactic buffers*, volume 91 of *Linguistische Arbeitsberichte*. Universität Leipzig: Institut für Linguistik.
- Müller, Gereon. 2017. Structure removal: An argument for feature-driven Merge. *Glossa* 2:1–35.
- Müller, Gereon, and Wolfgang Sternefeld. 1993. Improper movement and unambiguous binding. *Linguistic Inquiry* 24:461–507.
- Müller, Gereon, and Wolfgang Sternefeld. 1996. A-bar chain formation and economy of derivation. *Linguistic Inquiry* 27:480–511.
- Neeleman, Ad, and Hans van de Koot. 2010. A local encoding of syntactic dependencies and its consequences for the theory of movement. *Syntax* 13:331–372.
- Neeleman, Ad, and Amanda Payne. 2020. On matrix-clause intervention in accusativeand-infinitive constructions. *Syntax* 23:1–41.
- Nelson, Diane. 1998. Grammatical case assignment in Finnish. New York: Garland.
- Nunes, Jairo. 2008. Inherent case as a licensing condition for A-movement: The case of hyper-raising constructions in Brazilian Portuguese. *Journal of Portuguese Linguistics* 7:83–108.
- Polinsky, Maria, and Eric Potsdam. 2001. Long-distance agreement and topic in Tsez. *Natural Language and Linguistic Theory* 19:583–646.
- Poole, Ethan. 2015. A configurational account of Finnish case. In *Proceedings of the Penn Linguistics Conference 38 (PLC 38)*, ed. David Wilson. Philadelphia, PA: University of Pennsylvania.
- Poole, Ethan. to appear. Improper case. Natural Language and Linguistic Theory.
- Postal, Paul. 1974. On Raising. Cambridge, MA: MIT Press.
- Preminger, Omer. 2011. Agreement as a fallible operation. Ph.D. dissertation, MIT, Cambridge, MA.
- Preminger, Omer. 2014. Agreement and its failures. Cambridge, MA: MIT Press.
- van Riemsdijk, Henk, and Edwin Williams. 1981. NP structure. *The Linguistic Review* 1:171–218.
- Toivonen, Ida. 1995. A study of Finnish infinitives. Master's thesis, Brandeis University, Waltham, MA.
- Tuomikoski, Risto. 1978. Objektinsijaisista määrän adverbiaalesita. Virittäjä 82:26–51.
- Vainikka, Anne. 1989. Deriving syntactic representations in Finnish. Ph.D. dissertation, University of Massachusetts, Amherst, MA.
- Vainikka, Anne. 1995. Functional projections in Finnish non-finite constructions. University of Pennsylvania Working Papers in Linguistics 2:141–146.
- Williams, Edwin. 1974. Rule ordering in syntax. Ph.D. dissertation, MIT, Cambridge, MA.
- Williams, Edwin. 2003. Representation theory. Cambridge, MA: MIT Press.
- Williams, Edwin. 2013. Generative semantics, generative morphosyntax. *Syntax* 16:77–108.
- Woolford, Ellen. 2015. Ergativity and transitivity. *Linguistic Inquiry* 46:489–531.
- Wurmbrand, Susi. 2014. Tense and aspect in English infinitives. *Linguistic Inquiry* 45:403-447.

Yuan, Michelle. 2018. Dimensions of ergativity in Inuit: Theory and microvariation. Ph.D. dissertation, MIT, Cambridge, MA.

Yuan, Michelle. 2020. Ergativity and object shift across Inuit. Ms., UC San Diego. Zyman, Erik. to appear. Phase-constrained obligatory late adjunction. *Syntax* .